Programmazione lineare
Robert Dorfman
di Robert Dorfman
Programmazione lineare
Introduzione
La programmazione lineare è una famiglia di metodi matematici per individuare i modi più redditizi o in [...] sia perché si fonda sul concetto matematico di base. Nell'algebra delle matrici e dei vettori si definisce base di uno spazio militari, scienziati, ecc. - per risolvere una sorprendente varietà di problemi pratici. Non è difficile capire il perché. ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] e William L. Edge (1904-1997) avevano fatto in geometria algebrica. A sua volta Weil aveva imparato dai lavori di Chern sulle varietà complesse come usare i fibrati in geometria algebrica. Da questa interazione nacque l'estensione di Chern delle idee ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] Banach arbitrari. I recenti sviluppi nella teoria delle varietà di Banach, che hanno già condotto ad non sia invertibile. Ciò significa che det(U−λI)=0 e questa è un'equazione algebrica in λ di grado n, che ha quindi almeno una radice e al più n ...
Leggi Tutto
Equazioni differenziali: problemi non lineari
Jean Mawhin
La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] lisce da Leopold Kronecker nel 1869.
Grado di Brouwer
Calcolo algebrico delle soluzioni
Anche se originariamente Brouwer definì il suo grado per mappe continue tra due varietà orientate della stessa dimensione finita, in analisi è più conveniente ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] . Da questo risultato Cartan dedusse numerosi teoremi globali sui gruppi di Lie, sulla loro omologia come varietà e sulla struttura delle algebre di Lie associate.
Resta da menzionare, dell'Analysis situs e dei Compléments, il problema delle funzioni ...
Leggi Tutto
L'Eta dei Lumi: matematica. Matematica pura e applicata nel XVIII secolo
Ivor Grattan-Guinness
Matematica pura e applicata nel XVIII secolo
Nel presente volume la determinazione cronologica 'Settecento' [...] . Il manuale di Euler è stato citato in precedenza. L'algebra fu applicata alla teoria dei numeri, ma pochi matematici vi si che merita.
Anche maggiore ignoranza circonda la notevole varietà di società segrete ed eretiche cui molti membri dell ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] esempio, le famose congetture di Weil sulle funzioni ζ delle varietàalgebriche sui campi finiti.
Un discorso a parte, nello sviluppo dell'algebra commutativa, spetta allo studio algebrico delle disuguaglianze e delle strutture di ordine. Tale studio ...
Leggi Tutto
Combinatoria
Peter J. Cameron
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri non rappresenta una branca separata dalle altre ma le pervade tutte, poiché [...] isomorfismo dei grafi) sono essenzialmente la stessa cosa delle algebre di matrici reali simmetriche che ammettono una base di discreto: assomiglia più a una rete che a una varietà continua, se studiato su piccola scala, paragonabile alla lunghezza ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] di quello di Weierstrass da cui partivano per trattare una varietà di argomenti più avanzati. Si lasciò a Giulio Vivanti equazioni differenziali della forma
(dove F è razionale in w′, algebrica in w e analitica in z) si indirizzò per questo motivo ...
Leggi Tutto
L'Ottocento: matematica. Calcolo geometrico
Paolo Freguglia
Gert Schubring
Calcolo geometrico
Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] della limitazione a tre o quattro dimensioni con le varietà n-dimensionali furono effettivamente innovazioni di grande portata. Da William K. Clifford (1845-1879), il quale lo introdusse nelle algebre che da lui prendono il nome e con le quali sono ...
Leggi Tutto
varieta1
varietà1 s. f. [dal lat. variĕtas -atis, der. di varius «vario»]. – 1. a. La qualità di ciò che è vario, sia di più cose che sono diverse tra loro, sia di una cosa singola, in quanto sia diversa negli elementi che la compongono, negli...
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...