Biologia
Insieme dei cambiamenti che si verificano in un organismo sia animale sia vegetale a partire dall’inizio della sua esistenza. Nel corso dello sviluppo i tessuti e gli organi aumentano di dimensioni, [...] è posto a fondamento delle azioni e delle politiche dell’Unione in materia ambientale.
Matematica
Nella geometria elementare e differenziale, l’operazione di distendere una superficie sopra un piano senza alterare le lunghezze delle sue linee e l ...
Leggi Tutto
Fermat, ultimo teorema di
MMassimo Bertolini
di Massimo Bertolini
SOMMARIO: 1. Introduzione. ▭ 2. Storia: il lavoro di Kummer. ▭ 3. Estensioni abeliane di Q. ▭ 4. Estensioni esplicite di campi e funzioni [...] visto come l'insieme dei punti complessi di una curva proiettiva. Ne consegue che S2(N) si identifica con lo spazio dei differenziali olomorfi su X0(N); in particolare, per il teorema di Riemann-Roch, ha dimensione finita uguale al genere di X0(N ...
Leggi Tutto
L'Eta dei Lumi: matematica. Aspetti istituzionali della matematica
Gert Schubring
Aspetti istituzionali della matematica
Panorama degli sviluppi istituzionali nei secc. XVI e XVII
All'inizio dell'Età [...] e della geometria. Dopo il 1770 ca. i manuali cominciarono a contenere anche sezioni d'introduzione al calcolo differenziale e integrale e furono pubblicati addirittura trattati separati dedicati specificamente all'analisi. In nessuno di questi testi ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] x, y nel campo di definizione D(A) vale sempre (Ax∣y) = (x∣Ay). Operatori simmetrici provengono ad esempio da operatori differenziali con adatte condizioni al contorno. Un operatore simmetrico A con ± i in ρ (A) si dice, in accordo con il caso degli ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] XVIII e XIX sec., il punto di vista del continuo ha avuto il predominio. A seguito dello sviluppo del calcolo differenziale e integrale di Newton e Leibniz, sembrò che il mondo si potesse comprendere utilizzando tecniche analitiche come le equazioni ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] sono stati dimostrati (Alexander Ostrovskij, Dimitrii D. Mordukhai-Boltovskoi, Sergej Michailovič Voronin) teoremi relativi alla loro indipendenza differenziale in risposta a uno dei problemi posti da Hilbert nel 1900.
Nel 1975 S.M. Voronin dimostrò ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] traccia della 3-forma di Chern-Simons,
CS = A dA + (2/3)A A A,
dove il prodotto è il prodotto esterno di forme differenziali. Invece che essere esteso a tutti i cammini, l'integrale che compare in Z(M) è calcolato su tutti i campi di gauge a meno di ...
Leggi Tutto
Modelli
Patrick Suppes
Il significato del termine 'modello' nelle scienze
Il termine 'modello' non è usato esclusivamente in ambito scientifico, ma nei contesti più vari. Ciascuno di noi sa che cosa [...] di particolari ipotesi. Il punto essenziale, al riguardo, è che le ipotesi empiriche da cui vengono derivate le equazioni differenziali non sono elevate al rango di assiomi di una teoria generale. Si tratta di una distinzione riconosciuta nell'ambito ...
Leggi Tutto
Nuzialità
Lado Ruzicka
Introduzione
Il matrimonio e lo scioglimento delle unioni matrimoniali per divorzio o vedovanza sono stati da sempre oggetto di studio dei demografi in quanto la frequenza e la [...] per età e stratificazione sociale in ogni momento sono determinate dal precedente andamento della fecondità, della mortalità differenziale e delle migrazioni, nonché dall'affermarsi di nuovi modelli di matrimonio, divorzio, vedovanza e seconde nozze ...
Leggi Tutto
Scienza indiana. La scienza nella cultura indiana
Frits Staal
La scienza nella cultura indiana
Il concetto di scienza e la classificazione delle scienze
Per designare le conoscenze sistematiche indiane [...] nel XV secolo. Nel cap. X Hayashi afferma che nel XII sec. Bhāskara II già usava una relazione equivalente al differenziale d(senα)=cosαdα, e questo notevole livello di precisione ripropone l'interrogativo sul perché in India non siano maturate le ...
Leggi Tutto
differenziale
agg. e s. m. [der. di differenza]. – 1. agg. a. Delle differenze, che tien conto delle differenze, che stabilisce o intende stabilire una differenza: pretendere, ottenere, concedere un trattamento d.; pedagogia d., che distingue...
differenzialismo
s. m. Concezione basata sulla differenza di identità e caratteristiche che distinguono sessi, culture e civiltà. ◆ «Sono contro la discriminazione positiva, contro il “differenzialismo”. Io non credo che le donne siano più...