L'Ottocento: matematica. Equazioni differenziali alle derivate parziali
Thomas Archibald
Equazioni differenziali alle derivate parziali
Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] del potenziale a situazioni descritte da altri tipi diequazioni.
Il primo riconoscimento dell'esistenza di una funzione che sia il potenziale della forza gravitazionale di Newton si trova nella memoria diLagrange Sur l'équation séculaire de la Lune ...
Leggi Tutto
Risparmio
Pietro Alessandrini
Alberto Zazzaro
Definizione
Il risparmio è quella parte di reddito che non viene spesa a scopo di consumo. La determinazione contabile del risparmio è direttamente collegata [...] . L'obiettivo che l'individuo si pone è quello di massimizzare la propria funzione di utilità, rispettando il vincolo di bilancio. Matematicamente il problema può essere risolto applicando il metodo diLagrange, da cui risulta che l'utilità è massima ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] utilizzando tecniche analitiche come le equazioni differenziali. Le formulazioni diLagrange e di Hamilton della meccanica, le equazionidi Maxwell per l'elettromagnetismo e l'equazionedi Laplace, sembravano parlare di un mondo continuo che l ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] e in suo onore si parla oggi diequazioni diofantee.
A partire dal XVIII sec. la teoria dei numeri fiorisce rapidamente grazie alle opere di Pierre de Fermat, Leonhard Euler, Joseph-Louis Lagrange, Adrien-Marie Legendre e Gauss. Particolarmente ...
Leggi Tutto
L'Ottocento: astronomia. La teoria lunare da Laplace a Hansen e Hill
Curtis Wilson
La teoria lunare da Laplace a Hansen e Hill
Il capitolo riassume i principali sviluppi della teoria lunare nel XIX [...] λ e ϱ dagli elementi, le loro variazioni temporali saranno date dalle equazioni:
dove da/dt, dε/dt, de/dt e
sono dati dalle formule diLagrange in termini di derivate parziali della funzione perturbatrice Ω, che può essere essa stessa sviluppata ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] da Joseph-Louis Lagrange nel 1770, dopo alcuni tentativi infruttuosi di Leonhard Euler. Quest'ultimo fu il primo a dimostrare l'esistenza di infinite soluzioni dell'equazione diofantea [5], che inspiegabilmente chiamò equazionedi Pell.
Preminente ...
Leggi Tutto
La grande scienza. Fisica matematica: recenti sviluppi
Gianfausto Dell'Antonio
Fisica matematica: recenti sviluppi
La fisica matematica si può definire come la disciplina scientifica che si propone [...] elettromagnetico nel vuoto soddisfi le equazioni delle onde (le equazionidi Maxwell sono un sistema iperbolico, campo A(x), che giocherebbe altrimenti il ruolo di moltiplicatore diLagrange nel principio variazionale, imponendo vincoli al sistema. ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] del primo ordine mancanti della x o della y, può applicarsi più in generale a equazioni del tipo
attualmente note in letteratura come equazionidi d'Alembert-Lagrange. Differenziando l'equazione si ha infatti
[35] [p-f (p)]dx=xd[f (p)]+d[g (p)]
con ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] più tardi da Gauss) per mezzo diequazioni differenziali alle derivate parziali, dando la soluzione generale del problema della rappresentazione conforme della superficie sferica sul piano. Nel 1779 Lagrange estese questo risultato a una qualunque ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] fu riassunta da Lagrange nel Traité de la résolution des équations numériques de tous les degrés (1798).
Alla risoluzione numerica dei sistemi diequazioni appartengono: la cosiddetta 'regola di Cramer' (1750) per sistemi diequazioni lineari, ideata ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...