arte e matematica
arte e matematica Può la bellezza parlare il linguaggio della matematica? Il rapporto fra la scienza dei numeri e la creazione artistica non appare a tutta prima evidente, ma gli intrecci [...] che dilata le forme e sconvolge la prospettiva lineare. Si distinguono un’anamorfosi piana, ottenuta con anche perché accompagnata nello stesso dipinto dall’equazionedifferenziale che matematicamente descrive appunto la catastrofe chiamata ...
Leggi Tutto
Convessità
Arrigo Cellina
La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] di un problema di Cauchy per una equazionedifferenziale ordinaria del tipo
[1] formula
può convesse
Una funzione a valori reali V definita su di un sottoinsieme di uno spazio lineare X viene detta convessa se per ogni x e y nel suo dominio e per ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazionidifferenziali ordinarie
Jean Mawhin
Equazionidifferenziali ordinarie
Accanto a sostanziali progressi nella teoria delle equazioni [...] t)) del problema delle condizioni iniziali per un sistema di equazionidifferenziali ordinarie:
[1] y'=f(t,y), y(t0)= b)=0.
La condizione λ≠λk(k=1,2,…) di esistenza e unicità del problema lineare forzato:
[28] x"+λx=h(t), x(a)=x(b)=0,
viene così ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La matematizzazione della biologia e la biomatematica
Giorgio Israel
La matematizzazione della biologia e la biomatematica
Le sorgenti concettuali [...] volta la legge di Malthus in formula matematica ‒ ovvero nell'equazionedifferenziale dp/dt=mp(t), dove p(t) esprime il numero matematico, in quanto rappresentava il primo caso di oscillatore non lineare, assieme a quello di Volterra-Lotka ‒ fu il ...
Leggi Tutto
Caos deterministico
Angelo Vulpiani
Il programma di formalizzazione matematica della realtà inaugurato con la pubblicazione, nel 1687, dei Principia Mathematica di Isaac Newton è un punto di riferimento [...] dall'oscillatore di van der Pol, che descrive un circuito elettrico non lineare che soddisfi l'equazione d2/dt2−ε(1−x2)dx/dt+x=0: se ε〈0 Gij(x)=∂gi(x)/∂xj. Analogamente, nel caso di equazionidifferenziali [2] si ha
[9] formula
dove gli elementi ...
Leggi Tutto
Musica e matematica
Angelo Guerraggio
Musica e matematica
Che ogni accordo musicale si configuri come un rapporto numerico è consapevolezza che viene da lontano, addirittura dalla Repubblica e dal Timeo [...] generica di una corda tesa tra due punti e posta in vibrazione. L’equazione di d’Alembert – un’equazionedifferenziale alle derivate parziali del secondo ordine, lineare e omogenea – ammette come soluzione generale la somma di due onde trasversali ...
Leggi Tutto
BELTRAMI, Eugenio
Nicola Virgopia
Nacque a Cremona il 16 nov. 1835. Compiuti gli studi secondari nel ginnasio liceo di Cremona, s'iscrisse nel 1853 alla scuola di matematica dell'università di Pavia, [...] potenziato" e soddisfa ad un'equazionedifferenziale che non è altro che una trasformata dell'equazione di Laplace. In questo lavoro una qualunque retta come direzione della dilatazione lineare di una particolare deformazione, con essa coincida ...
Leggi Tutto
circuito
circùito [Der. del lat. circuitus, da circuire "andare intorno", comp. di circum "intorno" e ire "andare"] [ALG] Qualunque curva i cui punti siano in corrispondenza biunivoca con i punti di [...] c. in serie (la trattazione della rete in parallelo è duale di essa), per esso si ha l'equazionedifferenziale: f-d(Li)/dt=Ri, essendo i l'intensità della corrente; se il c. è lineare e normale (L e R indipendenti da i e dal tempo t), si ha f-L(di/dt ...
Leggi Tutto
TOGLIATTI, Eugenio Giuseppe
Erika Luciano
– Nacque a Orbassano il 3 novembre 1890 da Antonio e da Teresa Viale, primo di quattro fratelli: Tina, Enrico e Palmiro, futuro segretario del PCI.
Conseguita [...] come funzioni di due coordinate curvilinee, sono integrali linearmente indipendenti di un’equazionedifferenziale alle derivate parziali del secondo ordine lineare e omogenea.
Sul versante della geometria algebrica, Togliatti si occupò soprattutto ...
Leggi Tutto
differenze finite
Flavio Pressacco
Analogo discreto del differenziale (➔) nel continuo. Supponiamo di conoscere i valori di una funzione f(x) solo in certi punti equispaziati della variabile indipendente [...] risolvendo in via approssimata l’equazionedifferenziale che ne descrive il comportamento. A tal fine l’equazionedifferenziale viene convertita nella corrispondente equazione alle d. f., cioè un’equazione che mette in relazione una successione ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
solitone
solitóne s. m. [comp. di solit(ario) e -one di varî enti fisici]. – In fisica, termine introdotto inizialmente (1965) per denominare l’onda solitaria nei canali (v. solitario, n. 1 g) e poi generalizzato per indicare una perturbazione...