Matematico (Potsdam 1805 - Berlino 1851). Uno tra i protagonisti degli studi matematici del 19° secolo, fornì imprescindibili contributi allo studio delle funzioni ellittiche; il suo nome è ricordato per [...] (Gesammelte Werke, 1881-91).
Vita e attività
Studiò giovanissimo le opere di L. Eulero e di G. L. Lagrange. Tentò di risolvere mediante radicali l'equazione algebrica generale di 5º grado (cosa dimostrata, peraltro, impossibile in quegli stessi anni ...
Leggi Tutto
MATEMATICA
Federico Enriques
Matematica, o matematiche (gr. τὰ μαϑηματικά da μάϑημα "insegnamento") significa originariamente "disciplina" o "scienza razionale". Questo significato conferirono alla [...] . gravitazione) offrì ai matematici posteriori il campo di elaborazione della teoria delle equazioni differenziali. I più grandi analisti del sec. XVIII - da Eulero al Clairaut, al D'Alembert, al Lagrange e al Laplace - spesero in questa ricerca gran ...
Leggi Tutto
I m. c. permettono di risolvere con calcolatori elettronici, all'interno delle scienze applicate, i problemi complessi che sono formulabili tramite il linguaggio della matematica. Tali problemi raramente [...] consentano di trovare valori approssimati di u.
Un altro problema è quello dell'integrazione diequazioni (o sistemi diequazioni) 1750 dovuta a L. Eulero, e a cui fecero seguito due lavori di J.L. Lagrange. I problemi trattati includevano ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] . Dato che le geodetiche appaiono come punti critici di certi funzionali, il calcolo delle variazioni, che risale a L. Euler e J. L. Lagrange, è uno strumento naturale di ricerca. L'esistenza di geodetiche chiuse, in relazione a problemi dinamici, è ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] = 0 è l'equazione affine della curva, l'integrale
dx è olomorfo sulla curva se e solo se P(x, y) = 0 è l'equazionedi un'aggiunta della curva =
dove e (Tg / Γ) è la solita caratteristica diEulero. In ogni caso Tg non è omogeneo: tutti i suoi ...
Leggi Tutto
Numeri, teoria dei
LLarry Joel Goldstein
di Larry Joel Goldstein
SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] teorema 2 venne data da Lagrange nel 1770, dopo alcuni tentativi infruttuosi diEulero. Eulero fu il primo a dimostrare che l'equazione diofantea (1) ha infinite soluzioni. Inspiegabilmente Eulero chiamò questa equazione ‛equazionedi Pell' e il nome ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità diLagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] equazionedi Kepler' di importanza fondamentale in astronomia nello studio del problema dei due corpi.
Dopo la pubblicazione della Théorie Lagrange =0,57721… è la costante diEulero-Mascheroni. Quando si tratta di serie infinite, egli aveva affermato ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] da Joseph-Louis Lagrange nel 1770, dopo alcuni tentativi infruttuosi di Leonhard Euler. Quest'ultimo fu il primo a dimostrare l'esistenza di infinite soluzioni dell'equazione diofantea [5], che inspiegabilmente chiamò equazionedi Pell.
Preminente ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] , sviluppate via via da matematici come Eulero, Joseph-Louis Lagrange, Adrien-Marie Legendre, Carl F. Gauss trova essere ugua;le a 6, e abbiamo già ricordato l’equazionediEulero eiπ+1=0. Ebbene, con approssimazioni più accurate si aggiungono altri ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Paolo Ruffini
Francesco Barbieri
Franca Cattelani Degani
Paolo Ruffini, medico e matematico, deve la sua fama principalmente ai risultati ottenuti nel campo delle equazioni algebriche, anche se i suoi [...] m valori le radici di un’altra equazione (la trasformata o risolvente) di grado m.
Nella sua ampia trattazione Ruffini dichiara di partire dai risultati diLagrange, ma adottando i suoi metodi arriva ben oltre. Per le equazionidi 3° grado ricava in ...
Leggi Tutto