L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] errori diLagrange, Poisson non era stato capace di correggerli, e con il passare del tempo un numero sempre maggiore di iy)=u(x,y)+iv(x,y) soddisfa le equazionidi Cauchy-Riemann:
Da queste equazioni segue subito che le funzioni u e v sono ...
Leggi Tutto
L'Eta dei Lumi: la fine della conoscenza naturale 1700-1770. Concetti generali di materia e moto
James Evans
Concetti generali di materia e moto
Nel 1726, in seguito ai contrasti con le autorità francesi, [...] l'energia cinetica e l'energia potenziale a disposizione, le equazioni del moto si ottengono calcolando alcune derivate parziali e inserendole nella formula generale diLagrange.
Come dice Lagrange, "il metodo che espongo non richiede costruzioni né ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] a trovare una formula per la risoluzione delle equazionidi quinto grado (le 'quintiche'). Nel 1770 Joseph-Louis Lagrange aveva cominciato a sviluppare una teoria in grado di spiegare le ragioni di questo insuccesso, ma non l'aveva condotta a ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] mostrò che la funzione che definiva la superficie doveva soddisfare un'equazione alle derivate parziali. Nonostante la natura geometrica del problema, i metodi diLagrange erano tipicamente analitici; tuttavia poco dopo il 1776 il giovane matematico ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] o più di esse. Interpretando queste equazioni come equazionidi curve piane si possono sfruttare, per ricerche di analisi già accaduto nel XVIII sec. a opera diLagrange. Il nucleo più tecnico di questa teoria, trattata nei capitoli centrali ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità diLagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] soprattutto da parte diLagrange. A suo parere, infatti, funzioni 'qualunque' come quelle che provenivano dalla soluzione diequazioni differenziali erano rappresentabili in serie di potenze, e non in serie di seni e coseni di archi multipli, come ...
Leggi Tutto
L'Ottocento: fisica. La nascita della meccanica statistica
Olivier Darrigol
Jürgen Renn
La nascita della meccanica statistica
Modelli meccanici dei fenomeni termici
Con la locuzione 'meccanica statistica' [...] a e−βiε (dove β è il moltiplicatore diLagrange associato al vincolo dell'energia totale fissata). Dopodiché volte il volume totale delle sfere. Van der Waals usò con successo l'equazionedi stato che derivava da queste assunzioni, (P+a/V2)(V−B)=RT, ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali alle derivate parziali
Thomas Archibald
Equazioni differenziali alle derivate parziali
Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] del potenziale a situazioni descritte da altri tipi diequazioni.
Il primo riconoscimento dell'esistenza di una funzione che sia il potenziale della forza gravitazionale di Newton si trova nella memoria diLagrange Sur l'équation séculaire de la Lune ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] utilizzando tecniche analitiche come le equazioni differenziali. Le formulazioni diLagrange e di Hamilton della meccanica, le equazionidi Maxwell per l'elettromagnetismo e l'equazionedi Laplace, sembravano parlare di un mondo continuo che l ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] e in suo onore si parla oggi diequazioni diofantee.
A partire dal XVIII sec. la teoria dei numeri fiorisce rapidamente grazie alle opere di Pierre de Fermat, Leonhard Euler, Joseph-Louis Lagrange, Adrien-Marie Legendre e Gauss. Particolarmente ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...