L'Eta dei Lumi: matematica. Il calcolo delle variazioni
Ivor Grattan-Guinness
Il calcolo delle variazioni
Il calcolo in una e più variabili
Una volta sviluppata la teoria della differenziazione e integrazione [...] entusiasta dell'approccio, e segnalò l'importanza della teoria diLagrange e il suo futuro promettente assegnandole il nome di 'calcolo delle variazioni': il suo metodo delle equazioni modulari divenne quindi superato. Il suo trattato sul calcolo ...
Leggi Tutto
BELTRAMI, Eugenio
Nicola Virgopia
Nacque a Cremona il 16 nov. 1835. Compiuti gli studi secondari nel ginnasio liceo di Cremona, s'iscrisse nel 1853 alla scuola di matematica dell'università di Pavia, [...] . 217-265. Basandosi sui lavori diLagrange e Lecornu, il B. diede la definizione dell'inestindibilità come variante dell'elemento lineare (e non superficie come considerava Lagrange), stabilendo le equazioni fondamentali e ricavando la teoria delle ...
Leggi Tutto
MALFATTI, Gianfrancesco
Alessandra Fiocca
Nacque ad Ala nel Trentino il 26 sett. 1731 da Giovanni Battista e da Giuseppa Malfatti. Dopo studi nel collegio dei gesuiti di Verona, a diciassette anni si [...] studi del M. nell'ambito di questa teoria, dopo gli sviluppi apportati da Lagrange.
In generale la produzione scientifica M.: F. Brioschi, Sulla risolvente di Malfatti per le equazionidi quinto grado, in Annali di matematica pura e applicata, s. 1 ...
Leggi Tutto
BETTI, Enrico
Nicola Virgopia
Nacque a Pistoia il 21 ott. 1823; compiuti qui gli studi classici, si laureò in matematica nel 1846 presso l'università di Pisa, dove ebbe come maestro O. F. Mossotti. [...] di taliricerche il B., trovata la risolvente di 5° grado dell'equazione modulare, cercò di porla sotto la forma detta di Jerrard alla quale, mediante una trasformazione di Tschirnauss, si può ridurre qualsiasi equazionedidiLagrange dipenderebbe ...
Leggi Tutto
BONATI, Teodoro Massimo
Enzo Pozzato
Nacque a Bondeno (Ferrara), l'8 nov. 1724. A sedici anni il B. andò a Ferrara per seguirvi gli studi di filosofia e medicina; nel 1746 venne iscritto al Collegio [...] il B. pubblicò questa memoria non era ancora stato dimostrato il teorema diLagrange e Ruffini che dichiara l'impossibilità di risolvere equazioni algebriche determinate di grado superiore al quarto; tuttavia il B., intravedendo le enormi difficoltà ...
Leggi Tutto
CANTELLI, Francesco Paolo
Piero Delsedime
-Nacque a Palermo il 20 dic. 1875 da Vincenzo e Giulia Pizzoli. A Palermo frequentò l'università, dove si laureò in matematica pura nel 1899 con una tesi di [...] : fra questi può essere ricordato il lavoro Sulle parentesi diLagrange con applicazione al moto perturbato dei pianeti (Palermo 1900), in cui vengono considerate le equazioni del moto di punti liberi; viene messa in evidenza una forma che ...
Leggi Tutto
BRUNACCI, Vincenzo
Ugo Baldini
Nato a Firenze il 3 marzo 1768 da Ignazio Maria e da Elisabetta Danieli, ricevette la prima istruzione nel collegio degli scolopi, iniziando quindi lo studio della matematica [...] ingegneri Fantoni e Salvetti, ma l'incontro con le opere diLagrange fece capire al B. che la sua vera vocazione era del granduca Ferdinando III, il Calcolo integrale delle equazioni lineari, la prima delle sue opere analitiche più importanti ...
Leggi Tutto
Helmholtz Hermann Ludwig Ferdinand von
Helmholtz 〈hèlmolz〉 Hermann Ludwig Ferdinand von [STF] (Potsdam 1821 - Berlino 1894) Prof. di fisiologia nell'univ. di Königsberg (1849) e di anatomia e fisiologia [...] ◆ [ANM] Equazione unidimensionale di H.: v. equazioni differenziali alle derivate parziali: II 440 a. ◆ [MCC] Funzione di H.: lo stesso che energia libera di H. (v. sopra). ◆ [OTT] Invariante diLagrange-H., o di Smith-H.: → Lagrange, Giuseppe Luigi ...
Leggi Tutto
parentesi
parèntesi [Der. del lat. parenthesis, dal gr. parénthesis "inserzione", a sua volta comp. di pará "para-2", én "in" e títhemi "porre"] [ALG] [ANM] Simboli grafici, di varia forma e con particolari [...] P. algebriche); per le p. con nome proprio (p. diLagrange, di Poisson, ecc.), si rinvia al nome. ◆ P. ad equazioni dimensionali e unità di misura (come in questa Enciclopedia). ◆ [FSD] P. tonde: nella cristallografia, racchiudono i tre indici di ...
Leggi Tutto
metodo agli elementi finiti
Alfio Quarteroni
Metodo numerico per l’approssimazione della soluzione di un’equazione (o di un sistema diequazioni) alle derivate parziali. Sia Ω un sottoinsieme limitato [...] {T}. Gli elementi finiti ℙκ sono detti di tipo lagrangiano in quanto la base di polinomi scelta per la rappresentazione della soluzione numerica è fornita dai polinomi diLagrange. Sotto opportune ipotesi di regolarità della partizione {T} si ha che ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...