• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
lingua italiana
webtv
601 risultati
Tutti i risultati [2761]
Matematica [601]
Biografie [790]
Fisica [677]
Fisica matematica [257]
Filosofia [236]
Temi generali [230]
Storia della fisica [186]
Astronomia [159]
Medicina [151]
Storia [131]

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] che compare nella teoria della funzioni fuchsiane. Motivato da questo problema e da molti altri, non lineari, della fisica matematica, Poincaré formulò il principio del metodo della continuità, con il quale si cerca di ottenere soluzioni di equazioni ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] la sua teoria delle distorsioni elastiche, sviluppata fra il 1905 e il 1907, sono pietre miliari nella fisica matematica classica e anche nella matematica pura alcune sue pionieristiche idee si rivelarono in seguito feconde. L’intento di estendere ai ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Equazioni funzionali

Enciclopedia del Novecento (1977)

Equazioni funzionali JJacques Louis Lions di Jacques Louis Lions Equazioni funzionali sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] si supponga dapprima che i coefficienti pα siano differenziabili indefinitamente. Nel cap. 1 abbiamo incontrato i seguenti esempi: La fisica matematica è ricca di molti altri esempi; ma in tal caso si deve delineare un quadro ben più generale, il ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – FUNZIONI A QUADRATO SOMMABILE – TEORIA QUANTISTICA DEI CAMPI – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Equazioni funzionali (2)
Mostra Tutti

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] metodi analoghi si studia l''equazione di Poisson' Δu(x)=f(x), che compare in moltissimi problemi di fisica matematica riguardanti mezzi lineari omogenei e isotropi, tra i quali i problemi di elettrostatica, di campi gravitazionali e di equilibrio ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] doveva giungere alla quinta edizione. Come tutti coloro che si avventurano nella fisica matematica, Weyl dovette occuparsi dell'espressione matematica di quantità fisiche. In fisica non ci si preoccupa soltanto della posizione degli oggetti, ma anche ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] un programma di applicazioni dei nuovi algoritmi ai più svariati problemi di matematica, meccanica, astronomia e fisica matematica: restando soltanto nel campo della matematica pura, la teoria delle equazioni differenziali, la teoria delle equazioni ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] le sue possibilità applicative nelle direzioni più disparate, dalla statistica alla teoria del potenziale alla fisica matematica; dall'altro lato stimolò nei matematici l'interesse per lo studio di problemi e per l'uso di metodi totalmente nuovi e ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. La geometria non euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. La geometria non euclidea Rossana Tazzioli La geometria non euclidea Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] euclidea, i suoi campi di ricerca riguardavano la geometria delle curve e delle superfici e la fisica matematica (meccanica, teoria del potenziale, teoria dell'elasticità, campi elettrici ed elettromagnetici). Il Saggio, direttamente ispirato alle ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Combinatoria

Enciclopedia della Scienza e della Tecnica (2007)

Combinatoria Peter J. Cameron Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri non rappresenta una branca separata dalle altre ma le pervade tutte, poiché [...] verso la combinatoria e la teoria degli insiemi, e allontanarsi dall'algoritmo delle equazioni differenziali che domina la fisica matematica". Strettamente connesso a tutto ciò è lo sviluppo della ricerca operativa, una disciplina che ha sempre avuto ... Leggi Tutto
CATEGORIA: ALGEBRA – ARITMETICA
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – TEORIA DELLE RAPPRESENTAZIONI – INSIEMI PARZIALMENTE ORDINATI – PROBLEMA DEI QUATTRO COLORI – FONDAMENTI DELLA MATEMATICA
Mostra altri risultati Nascondi altri risultati su Combinatoria (4)
Mostra Tutti

L'Ottocento: matematica. Equazioni differenziali ordinarie

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali ordinarie Jeremy Gray Equazioni differenziali ordinarie Variabili reali Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] , e in effetti come quasi tutte le equazioni differenziali importanti introdotte all'epoca in fisica matematica, è lineare. Questo significa, in termini matematici, che somme e multipli (secondo una costante) di soluzioni sono ancora soluzioni e, in ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 61
Vocabolario
fìṡico-matemàtico
fisico-matematico fìṡico-matemàtico (o fiṡicomatemàtico) agg. (pl. fìṡico-matemàtici o fiṡicomatemàtici). – Che riguarda insieme la fisica e la matematica: ricerche fisico-matematiche.
matemàtica
matematica matemàtica (ant. e raro mattemàtica) s. f. [dal lat. mathematĭca (sottint. ars), gr. μαϑηματική (sottint. τέχνη); v. matematico]. – 1. a. Originariamente, la scienza razionale dei numeri (aritmetica, intesa come scienza della quantità...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali