• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
1147 risultati
Tutti i risultati [1147]
Matematica [196]
Fisica [144]
Temi generali [144]
Economia [119]
Diritto [99]
Medicina [92]
Analisi matematica [81]
Biologia [78]
Scienze demo-etno-antropologiche [65]
Fisica matematica [68]

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] di variabile complessa reali e y>0. Se [36] formula è in Γ, γ può agire su ℍ nel modo seguente: [37] formula. Una forma automorfa di peso k per Γ è una funzione f(z) definita per z in ℍ tale che: a b a) f(γ(z))(cz+d)−k=f(z), γ=() c d b) f ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

La grande scienza. Fisica matematica: recenti sviluppi

Storia della Scienza (2003)

La grande scienza. Fisica matematica: recenti sviluppi Gianfausto Dell'Antonio Fisica matematica: recenti sviluppi La fisica matematica si può definire come la disciplina scientifica che si propone [...] [5] ∫FμνFμνd 4x=(1/2)∫d4x[Tr(F-F*)2+2Tr(F*F)], dove F* è il duale di F (cioè F*μν=Fμν). Si può verificare che Tr(F*F) è della forma divY, per una funzione Y opportuna, e pertanto, per il teorema di Gauss, il suo integrale sull'intero spazio è ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA

L'Età dei Lumi: matematica. Le equazioni differenziali

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Le equazioni differenziali Silvia Mazzone Clara Silvia Roero Le equazioni differenziali E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] F è tale che ∂F/∂x=M e ∂F/∂y=N. Inoltre, egli mostra come la primitiva F può essere ottenuta dalle funzioni M e N integrando opportunamente la prima rispetto a x e la seconda rispetto a y. Clairaut estende il risultato a funzioni di più variabili ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] piana C non è altro che l'insieme degli zeri di un polinomio P(x,y) di due variabili reali x e y: [1] C={(x,y)∈ℝ2 funzioni meromorfe z e w di ℳ(S). Questi dati definiscono un'applicazione [6] f:S{poli di z e w}→C⊂ℂ2 la cui immagine è C. Se invece di ... Leggi Tutto
CATEGORIA: GEOMETRIA

Misura e integrazione

Enciclopedia del Novecento (1979)

Misura e integrazione M. Evans Munroe Introduzione La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] )=f(b, d)−f(b, c)−f(a, d)+f(a, c). Supponiamo che f sia continua a destra in ciascuna variabile di tutti i funzionali lineari continui su B. Data una funzione f da X a B e un F∈B*, consideriamo la funzione a valori reali F(f) su X. Diremo che f ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEOREMA DELLA CONVERGENZA MONOTONA – FUNZIONALI LINEARI CONTINUI – CONVERGENZA INCONDIZIONATA – INTEGRAZIONE DI LEBESGUE – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] F sia liscia e la corrispondente equazione di Euler-Lagrange sia uniformemente ellittica. Questo risultato completò il lungo sforzo per stabilire la regolarità delle soluzioni deboli per problemi 'scalari', cioè quando u è una funzione a valori reali ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Pelle

Universo del Corpo (2000)

Pelle Rosadele Cicchetti Gian Carlo Fuga Red. Johanna Vennemann La pelle, o cute, costituisce l'involucro che riveste tutto il corpo (v. cap. Tegumentario, apparato). È il più grande e il più versatile [...] la funzione di secernere muco di acqua attraverso la pelle un pericolo reale corneo di grandezza variabile, da quella di un grano di miglio York, Wiley, 19942 (trad. it. Bologna, Zanichelli, 1996). F. Drago, A. Rebora et al., Human herpes virus 7 in ... Leggi Tutto
CATEGORIA: SISTEMATICA E BIOLOGIA DELL EVOLUZIONE – ANATOMIA – FISIOLOGIA UMANA – PATOLOGIA – BIOGRAFIE – PSICANALISI – PSICOLOGIA COGNITIVA – PSICOLOGIA DELL ETA EVOLUTIVA – PSICOLOGIA GENERALE – PSICOLOGIA SOCIALE – PSICOLOGIA SPERIMENTALE – PSICOMETRIA – PSICOTERAPIA – STORIA DELLA PSICOLOGIA E DELLA PSICANALISI – TEMI GENERALI
TAGS: MICROSCOPIA ELETTRONICA A SCANSIONE – CARCINOMA A CELLULE SQUAMOSE – ANTICORPI MONOCLONALI – APPARATO TEGUMENTARIO – XERODERMA PIGMENTOSO
Mostra altri risultati Nascondi altri risultati su Pelle (5)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] aspetti della teoria classica degli insiemi, per esempio quella di Georg Cantor (1845-1918). Per esempio, se C[a,b] è l'insieme delle funzioni f (a valori reali) nella variabile reale s, definite e continue nell'intervallo chiuso [a, b], la ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] a,b] è un intervallo della retta reale ℝ e f(x,y,η) è una funzione regolare di tre variabili reali. Dati due numeri reali α e β, si considera il problema di trovare un minimo di F(u) tra tutte le funzioni u sufficientemente regolari che verificano le ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] hanno però il vantaggio di funzionare bene in qualunque numero di variabili, ossia, in termini 'altra. Ai numeri primi di ℤ corrispondono polinomi irriducibili f in K[t]. La funzione zeta associata a K(t) si definisce come: [4] ∏f(1-(qdegf)-s)-1 dove ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA
1 2 3 4 5 6 7 8 ... 34 ... 115
Vocabolario
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
variàbile
variabile variàbile agg. e s. f. [dal lat. tardo variabĭlis, der. di variare «variare»]. – 1. agg. Che varia, che può variare, che è soggetto a variare: grandezza, valore, norma v.; il prezzo è v. secondo le stagioni e la richiesta; quindi...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali