• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
lingua italiana
331 risultati
Tutti i risultati [4625]
Matematica [331]
Biografie [782]
Diritto [620]
Storia [498]
Arti visive [457]
Temi generali [413]
Economia [282]
Fisica [277]
Archeologia [283]
Religioni [245]

La seconda rivoluzione scientifica: matematica e logica. La probabilità

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La probabilita Eugenio Regazzini La probabilità Evoluzione della nozione di probabilità La grande difficoltà in cui si dibattevano i cultori [...] funzione F(x):=P(Ax), con x∈ℝ è nota come 'funzione di ripartizione' o di 'distribuzione' di X. Quindi, nota la funzione xn}) in corrispondenza a ogni n-upla (x1,…,xn) di numeri reali. Nella formulazione classica si assume, inoltre, che ogni Xn abbia ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] italiano nel 1832 a cura di Piola, Cauchy discuteva quando una funzione f(x) può essere sviluppata in serie di potenze di x, convergente con la 'potenza del continuo' come l'insieme dei numeri reali. D'altra parte, i risultati di Cantor sugli insiemi ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] tali che "tutte le loro dimensioni lineari", così come le rispettive aree, siano più piccole di un numero reale positivo ω. La funzione f(x,y) sia limitata inferiormente e superiormente in ciascun τk rispettivamente da gk e Gk; definiamo Con questa ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Intuizionismo

Enciclopedia del Novecento (1978)

Intuizionismo AArend Heyting di Arend Heyting Intuizionismo sommario: 1. Concetti fondamentali.  2. Aritmetica elementare.  3. Il principio del terzo escluso. 4. I numeri reali. 5. Ineguaglianza e separazione [...] . - Non ogni definizione classica di funzione misurabile può venire usata. Per esempio, se la funzionef assume il valore costante a e se b è un numero reale tale che non si sa se b = a, allora la specie di punti per cui f(x) = b non è misurabile ... Leggi Tutto
TAGS: TEOREMA DI BOLZANO-WEIERSTRASS – PRINCIPIO DEL TERZO ESCLUSO – QUANTIFICATORE UNIVERSALE – LIMITE DI UNA SUCCESSIONE – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su Intuizionismo (3)
Mostra Tutti

Solitoni

Enciclopedia del Novecento (1989)

Solitoni Francesco Calogero SOMMARIO: 1. Introduzione: cenno storico.  2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier.  3. L'equazione di Korteweg-de Vries.  4. La [...] al tempo t = 0; p (convenzionalmente, un numero reale positivo), che fissa la ‛forma' della soluzione (tanto il dell'operatore integro-differenziale L- sulla generica funzione F(x) (annullantesi per x → + ∞). Ponendo ora f = 1 (per semplicità) e g(z ... Leggi Tutto
TAGS: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS – EQUAZIONE ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – SPAZIO DELLE CONFIGURAZIONI – EQUAZIONE DI SCHRÒDINGER
Mostra altri risultati Nascondi altri risultati su Solitoni (4)
Mostra Tutti

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] (n) sono i coefficienti della serie, s=σ+it, σ e t numeri reali, i2=−1. Se la serie converge otteniamo una funzione f(s) della variabile complessa s che è anche detta funzione generatrice della successione numerica a(n). Sotto determinate ipotesi per ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] m=p/q, ossia nq=mp. La rappresentazione di Cantor dei numeri reali prende una successione di numeri razionali r=(r0,…,rn,…) per rappresentare quando di insiemi disgiunti e non vuoti, allora esiste una funzione f su S che assegna a ciascun X in S un ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] , cioè l'insieme di tutti i numeri complessi x+iy, con x,y reali e y>0. Se [36] formula è in Γ, γ può agire su ℍ nel modo seguente: [37] formula. Una forma automorfa di peso k per Γ è una funzione f(z) definita per z in ℍ tale che: a b a ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

L'Età dei Lumi: matematica. Le equazioni differenziali

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Le equazioni differenziali Silvia Mazzone Clara Silvia Roero Le equazioni differenziali E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] F(x,y)=c, ove la funzione F è tale che ∂F/∂x=M e ∂F/∂y=N. Inoltre, egli mostra come la primitiva F può essere ottenuta dalle funzioni espressione delle soluzioni particolari sia nel caso delle radici reali (semplici o multiple) sia nel caso delle ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] la teoria delle primitive e degli integrali per le funzioni di una variabile reale a valori in uno spazio normato completo su ℝ. In assenza della nozione di misura, se f:I→ℝ per una parte I di ℝ, la funzione g definita su I è detta primitiva di ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 34
Vocabolario
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
reale²
reale2 reale2 agg. [dal lat. mediev. realis, der. di res «cosa»]. – 1. Che è, che esiste veramente, effettivamente e concretamente (contrapp., nell’uso com. e generico, a immaginario, illusorio e anche a apparente, ideale, possibile): le mie...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali