• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
1261 risultati
Tutti i risultati [1261]
Matematica [174]
Fisica [167]
Medicina [155]
Biologia [131]
Temi generali [134]
Diritto [108]
Economia [84]
Analisi matematica [85]
Fisica matematica [81]
Scienze demo-etno-antropologiche [65]

Gruppi

Enciclopedia del Novecento (1978)

Gruppi GGeorge W. Mackey di George W. Mackey SOMMARIO: 1. Introduzione e storia. □ 2. Concetti fondamentali. □ 3. Anelli di endomorfismi e gruppi lineari. □ 4. La struttura dei gruppi finiti. □ 5. Gruppi [...] può essere estesa, in modo più o meno ovvio, al caso di funzioni di più variabili complesse e si scopre che il fatto che una funzione su V- sia analitica come funzione di p variabili complesse è indipendente dalla scelta della base. Si dice che una ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI NECESSARIE E SUFFICIENTI – TEOREMA FONDAMENTALE DELL'ALGEBRA – PRINCIPIO DI ESCLUSIONE DI PAULI – LEGGE DI RECIPROCITÀ QUADRATICA

STORIA DELLA MATEMATICA

Enciclopedia della Matematica (2013)

STORIA DELLA MATEMATICA Luigi Borzacchini STORIA DELLA MATEMATICA Il tempo della scienza senza tempo La matematica è la più antica e la più immutabile delle discipline. Si può dire che la matematica [...] in fondo ancora geometrico, ma il simbolismo era pienamente autonomo, e questo gli consentiva di studiare tali funzioni. Lo studio delle funzioni di variabile complessa raggiunge la sua forma moderna in Bernhard Riemann (1826-66). Se si considera che ... Leggi Tutto
TAGS: PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA – METODO DEI MOLTIPLICATORI DI LAGRANGE – ACCADEMIA DELLE SCIENZE DI BERLINO – TEOREMA FONDAMENTALE DELL’ALGEBRA – MEDITATIONES DE PRIMA PHILOSOPHIA

Fluidi, dinamica dei

Enciclopedia del Novecento (1978)

Fluidi, dinamica dei RRobert D. Richtmyer di Robert D. Richtmyer SOMMARIO: 1. Conoscenze all'inizio del secolo. □ 2. Le equazioni fondamentali: a) equazioni euleriane e lagrangiane; b) la legge dell'entropia; [...] come detto sopra. b) Esempio: il flusso attorno a un'ala di Žukovskij. Attraverso successive modifiche e usando i metodi delle funzioni di variabile complessa, il flusso uniforme (bidimensionale, non viscoso, incompressibile e stazionario) attorno a ... Leggi Tutto
TAGS: VARIABILI DIPENDENTI E INDIPENDENTI – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI DIFFERENZIALI LINEARI – EQUAZIONE A DERIVATE PARZIALI – LINGUAGGIO DI PROGRAMMAZIONE

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] non è la sola connessione tra teoria dei numeri e funzioni di una variabile complessa. Un'altra profonda connessione esiste per tramite della teoria delle funzioni automorfe. Queste funzioni, introdotte per la prima volta da Gauss e Jacobi, implicano ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] , Charles-Émile Picard (1856-1941) sviluppava la difficile generalizzazione della teoria riemanniana delle funzioni alle funzioni di variabili complesse su una superficie algebrica. I due approcci, nonostante fossero diversi, coglievano aspetti della ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] sulla distribuzione dei primi. Il passo chiave iniziale consisteva nel considerare la funzione zeta come funzione della variabile complessa s. Sulla base del lavoro di Riemann, Jacques-Salomon Hadamard (1865-1963) e Charles de la Vallée-Poussin ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

Supersimmetria

Enciclopedia della Scienza e della Tecnica (2007)

Supersimmetria Francesco Fucito Augusto Sagnotti Alla scala delle più piccole distanze esplorate attualmente, dell'ordine di 10−18 m, la materia appare costituita da combinazioni di poche decine di [...] tecnico non fornisce risultati esatti, ma ha essenzialmente la valenza di una serie asintotica. Come il metodo del punto di sella per le funzioni di variabile complessa, esso può comunque condurre a risultati molto accurati. In questo ambito, le ... Leggi Tutto
CATEGORIA: MECCANICA QUANTISTICA
TAGS: PRINCIPIO DI INDETERMINAZIONE DI HEISENBERG – ROTTURA SPONTANEA DELLA SIMMETRIA – PRINCIPIO DI ESCLUSIONE DI PAULI – TEORIA QUANTISTICA DEI CAMPI – COSTANTI DI ACCOPPIAMENTO
Mostra altri risultati Nascondi altri risultati su Supersimmetria (2)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] Carl Neumann, usarono in modo sistematico il teorema integrale di Cauchy e trattarono automaticamente le funzioni come funzioni di variabile complessa. Anche lo stretto legame tra funzioni complesse e armoniche contribuì a rendere naturale la teoria ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

DINI, Ulisse

Dizionario Biografico degli Italiani (1991)

DINI, Ulisse Marta Menghini Nacque a Pisa il 14 ott. 1845 da Pietro e da Teresa Marchioneschi. Alunno della Scuola normale superiore, fu allievo all'università pisana di E. Betti e O. F. Mossotti, e [...] condizioni del tutto generali. Altre memorie del D. riguardano la geometria infinitesimale, la teoria delle funzioni di variabile complessa, le applicazioni della teoria dei residui, gli studi sulle equazioni differenziali lineari, esposte dai 1898 ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SCUOLA NORMALE SUPERIORE DI PISA – EQUAZIONE A DERIVATE PARZIALI – INTERVALLO DI INTEGRAZIONE – GEOMETRIA DIFFERENZIALE – EQUAZIONE DIFFERENZIALE
Mostra altri risultati Nascondi altri risultati su DINI, Ulisse (3)
Mostra Tutti

Laplace, trasformazione di

Enciclopedia della Matematica (2013)

Laplace, trasformazione di Laplace, trasformazione di utile strumento per lo studio di equazioni differenziali lineari, sia ordinarie che alle derivate parziali, perché permette di trasformare problemi [...] in ogni intervallo limitato di [0, +∞), e sia s una variabile complessa. Se per qualche valore di s l’integrale converge, esso risulta una funzione F(s) che si chiama trasformata (unilatera) di Laplace di ƒ(t). Tale funzione si designa spesso col ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DIFFERENZIALE LINEARE – SISTEMI DI EQUAZIONI LINEARI – ASSOLUTAMENTE INTEGRABILE
1 2 3 4 5 6 7 8 ... 127
Vocabolario
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
variàbile
variabile variàbile agg. e s. f. [dal lat. tardo variabĭlis, der. di variare «variare»]. – 1. agg. Che varia, che può variare, che è soggetto a variare: grandezza, valore, norma v.; il prezzo è v. secondo le stagioni e la richiesta; quindi...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali