• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
37 risultati
Tutti i risultati [561]
Storia della matematica [37]
Matematica [193]
Fisica [123]
Fisica matematica [59]
Algebra [55]
Biografie [55]
Analisi matematica [52]
Temi generali [42]
Statistica e calcolo delle probabilita [41]
Storia della fisica [40]

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] decompone in (−i)(1+i)2; solamente i numeri primi della forma 4n+3, come 7 o 19, sono primi anche come interi di Gauss. Nel caso quadratico la legge di reciprocità si enuncia e si dimostra soltanto per i numeri primi dispari positivi; i casi 2 e −1 ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. La geometria non euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. La geometria non euclidea Rossana Tazzioli La geometria non euclidea Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] erano insite nella natura stessa del problema. All'amico Farkas Bólyai (1775-1856), che gli inviava una 'dimostrazione' del V postulato, Gauss rispondeva nel dicembre del 1799: "la via sulla quale mi sono messo non conduce al fine che si cerca, e che ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] quella distribuzione e con f una funzione continua su S. Gauss afferma l'esistenza di una distribuzione di carica che, oltre Il teorema di Stokes Il teorema di Stokes, come quelli di Gauss e Green, mette in relazione l'integrale di una funzione su un ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] x in corrispondenza di ogni valore assegnato di a, mentre la corrispondente equazione per sl(v) ne ha nove. Questo suggerì a Gauss, Abel e Jacobi, ma non a Legendre, che le radici in più potessero essere complesse e quindi che si dovesse considerarla ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] E+F)Xn+D-1B. Sia nel metodo di Jacobi sia in quello di Gauss-Seidel l'idea è quella di mettere il sistema nella forma X=UX+V, tale che ∥U∥⟨1 per assicurare la convergenza. Gauss e Jacobi non affrontano esplicitamente questo problema teorico e per ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] come il limite dove S è una piccola regione intorno al punto P, e S′ è la sua immagine secondo l'applicazione di Gauss. Egli mostrò poi che il valore della curvatura in un punto era sempre dato dal prodotto dei raggi di curvatura estremanti. Si può ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Calcolo delle probabilità e statistica

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo delle probabilita e statistica Ivo Schneider Calcolo delle probabilità e statistica Il ruolo di Laplace nella stocastica del XIX secolo Numerosi autori hanno contribuito [...] la riduzione cercata a un sistema di m equazioni lineari per le m incognite xj. Si tratta delle equazioni che in seguito Gauss chiamerà equazioni normali. Con la soluzione della [3] per le xj, che qualora esista è unica, dalle n equazioni di partenza ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] dovuto al matematico tedesco Georg Friedrich Bernhard Riemann (1826-1866), che si basò su una precedente idea di Carl Friedrich Gauss (1777-1855). Questi aveva dimostrato nel 1827 che la curvatura di una superficie (una misura di quanto essa sia ben ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] "per sua natura" la ricerca doveva essere limitata "ai casi in cui la serie effettivamente converge", ossia per ∣x∣⟨1, come Gauss stabiliva facilmente mediante il criterio di d'Alembert, mentre è divergente per ∣x∣>1 e "la sua somma non può essere ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3 4
Vocabolario
gauss
gauss 〈ġàus〉 s. m. [dal nome del matematico e fisico ted. K. F. Gauss (1777-1855)]. – Unità di misura, nel sistema CGS elettromagnetico, dell’induzione magnetica: è l’induzione nel vuoto in un punto ove il campo magnetico ha intensità di 1...
gaussiano
gaussiano agg. [dal nome del matematico e fisico ted. K. F. Gauss (1777-1855)]. – In geometria: curvatura g., numero, associato a ogni punto ordinario di una superficie dello spazio euclideo, che indica di quanto e in qual modo è incurvata...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali