L'Eta dei Lumi: matematica. Aspetti istituzionali della matematica
Gert Schubring
Aspetti istituzionali della matematica
Panorama degli sviluppi istituzionali nei secc. XVI e XVII
All'inizio dell'Età [...] illustrare gli elementi dell'aritmetica, dell'algebra e della geometria. Dopo il 1770 ca. i manuali cominciarono a contenere anche sezioni d'introduzione al calcolo differenziale e integrale e furono pubblicati addirittura trattati separati dedicati ...
Leggi Tutto
L'Ottocento: astronomia. Il problema dei tre corpi e la stabilita del Sistema solare
June Barrow-Green
Il problema dei tre corpi e la stabilità del Sistema solare
Questo capitolo illustra, a grandi [...] tra il 1881 e il 1886 in una serie di quattro articoli, in cui cercava di studiare geometricamente il comportamento globale della famiglia di curve-soluzioni di un'equazione differenziale. L'idea di rappresentare le soluzioni di un'equazione ...
Leggi Tutto
L'Eta dei Lumi: matematica. Lo sviluppo della teoria della probabilita e della statistica
Oscar Sheynin
Lo sviluppo della teoria della probabilità e della statistica
I primi sviluppi del calcolo delle [...] concepì un semplice esperimento per dimostrare che la probabilità geometrica era in grado di trattare casi in cui le applicando, con un suo tipico procedimento, le seguenti equazioni differenziali:
e, 'in media'
La soluzione fu da lui ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] alla quale noi possiamo misurare, tale discretezza viene appianata, ed è per questo che le equazioni differenziali danno una buona descrizione dell'Universo. La geometria non commutativa, sviluppata da Alain Connes e da altri, è anch'essa legata alla ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] ,…, z. Usando la formula per la somma dei termini di una progressione geometrica, per ∣t∣⟨1 otteniamo:
Per calcolare R(n) è sufficiente derivare n Voronin) teoremi relativi alla loro indipendenza differenziale in risposta a uno dei problemi posti ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] analogo a quello che oggi chiamiamo varietà caratteristica. Si apre così la via a una teoria geometrica delle equazioni differenziali che sarà ampiamente sviluppata nel secolo successivo. Accanto a questa proseguiranno le ricerche sui metodi più ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] Jacobi.
Un'interessante svolta di carattere geometrico alla storia del principio di minima azione e imporre a essa di soddisfare in modo identico le equazioni differenziali alle derivate parziali [21*]. È sufficiente invece considerare S come ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] in serie asintotiche i cui coefficienti hanno significato geometrico. Questi invarianti geometrici, così organizzati, si riescono a calcolare, per ricorrenza, non appena si trovino equazioni differenziali soddisfatte dalla funzione di partizione. Si ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] modo particolare le equazioni e i sistemi di equazioni differenziali lineari.
Il quinto capitolo sviluppa lo studio locale Henri Cartan e di Samuel Eilenberg; gli Eléments de géometrie algebrique (1971) di Alexander Grothendieck e di Jean Dieudonné ...
Leggi Tutto
L'Eta dei Lumi: matematica. La teoria dei numeri
Günther Frei
La teoria dei numeri
La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] era ancora quello di una scienza empirica che non poteva competere con le teorie geometriche già ben consolidate o con il calcolo differenziale e integrale, e non attraeva quindi molta attenzione, nonostante matematici eminenti come Fermat, Euler ...
Leggi Tutto
geometria
geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
differenziale
agg. e s. m. [der. di differenza]. – 1. agg. a. Delle differenze, che tien conto delle differenze, che stabilisce o intende stabilire una differenza: pretendere, ottenere, concedere un trattamento d.; pedagogia d., che distingue...