• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
44 risultati
Tutti i risultati [131]
Matematica [44]
Fisica [24]
Astronomia [19]
Arti visive [13]
Storia della matematica [13]
Biografie [12]
Storia dell astronomia [10]
Algebra [9]
Temi generali [10]
Analisi matematica [10]

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] (x, y) di numeri complessi che soddisfano l'equazione. Una tale curva è chiamata ‛curva ellittica'. La teoria delle curve ellittiche riunisce in modo affascinante geometria, analisi e aritmetica e su di essa si stanno compiendo molte ricerche. C'è ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] che spetta alle equazioni differenziali ordinarie lineari nella teoria delle funzioni ellittiche. Entrambi i successi sono dovuti alla natura essenzialmente geometrica della teoria delle funzioni di una variabile complessa di cui Gauss disponeva ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] e i legami della geometria con la teoria degli invarianti. I risultati ottenuti furono utilizzati all'inizio del XX sec. nell'importante teoria aritmetica delle curve ellittiche (Schappacher 1990). Lucas si interessò anche al problema di riconoscere ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: astronomia. Il problema dei tre corpi e la stabilità del Sistema solare

Storia della Scienza (2003)

L'Ottocento: astronomia. Il problema dei tre corpi e la stabilita del Sistema solare June Barrow-Green Il problema dei tre corpi e la stabilità del Sistema solare Questo capitolo illustra, a grandi [...] ‒ generate nel caso di orbite a due corpi di tipo ellittico; 3) quelle in cui le inclinazioni sono finite e le di questi che commise l'errore cruciale della sua concezione geometrica. Il matematico pensava infatti di aver dimostrato che una ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] quale dipende la metrica dello spazio. Introducendo una terminologia rimasta in uso, Klein distingue le geometrie non euclidee in 'ellittica' (quando la superficie fondamentale è immaginaria) e 'iperbolica' (quando la superficie fondamentale è reale ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La scienza presso le civiltà precolombiane. La natura della conoscenza e delle pratiche scientifiche nella civiltà inca

Storia della Scienza (2001)

La scienza presso le civilta precolombiane. La natura della conoscenza e delle pratiche scientifiche nella civilta inca Gary Urton Jean-François Genotte La natura della conoscenza e delle pratiche [...] prima di loro) svilupparono tradizioni talmente complesse, nella geometria e nei calcoli, che permisero loro di rispondere di tipo rettangolare, quadrangolare, trapezoidale, circolare, ovale, ellittica e irregolare. Per esempio, nel sito di Pisac, ... Leggi Tutto
CATEGORIA: COMPUTO DEL TEMPO – STORIA DELL ASTRONOMIA – BOTANICA PER REGIONI E PAESI – STORIA DELLA MATEMATICA – AMERICA – AGRICOLTURA NELLA STORIA – AGRONOMIA E TECNICHE AGRARIE

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] z. Usando la formula per la somma dei termini di una progressione geometrica, per ∣t∣⟨1 otteniamo: Per calcolare R(n) è sufficiente Demjanenko e Gerhard Frey, studiando l'aritmetica delle curve ellittiche, cioè delle curve della forma y2=x3+ax+b ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] anche per il ruolo che ebbe in fisica teorica e in geometria differenziale nel XX secolo. Charles-Émile Picard (1856-1941) e dell'equazione Lu=f, con u∈D'(Ω) sono C∞ quando L è ellittico, u∈L2 a coefficienti lisci e f è C∞. Quando L è il laplaciano ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Fermat, ultimo teorema di

Enciclopedia della Scienza e della Tecnica (2007)

Fermat, ultimo teorema di Massimo Bertolin "Cubum autem in duos cubos, aut quadrato quadratum in duos quadrato quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem [...] questo insieme e ℂ/Λτ, così che diviene possibile sommare i punti complessi della curva ellittica Eτ. Quest'operazione di somma può equivalentemente essere definita in modo geometrico, per mezzo della proprietà seguente: la somma di tre punti P, Q e ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – PETER GUSTAV, LEJEUNE DIRICHLET – DOMINI A FATTORIZZAZIONE UNICA – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti

Matematica: problemi aperti

Enciclopedia della Scienza e della Tecnica (2007)

Matematica: problemi aperti Claudio Procesi Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che [...] complesse di una tale equazione è una curva ellittica (ovvero topologicamente analoga alla superficie di uno Il problema jacobiano Si tratta di un famoso problema di algebra o geometria, formulato da Ott-Heinrich Keller nel 1939. Questa la sua ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – INTERNATIONAL MATHEMATICAL UNION – METODO DI ELIMINAZIONE DI GAUSS – FUNZIONE DI VARIABILE COMPLESSA
Mostra altri risultati Nascondi altri risultati su Matematica: problemi aperti (14)
Mostra Tutti
1 2 3 4 5
Vocabolario
ellìttico¹
ellittico1 ellìttico1 agg. [der. di ellisse] (pl. m. -ci). – 1. Relativo all’ellisse, avente forma, andamento, proprietà simili a quelli dell’ellisse: arco e., edificio a pianta ellittica. In botanica si dice ellittico un organo (per es. una...
riemanniano
riemanniano 〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali