• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
35 risultati
Tutti i risultati [35]
Matematica [23]
Geometria [10]
Fisica [6]
Biologia [5]
Fisica matematica [5]
Medicina [5]
Biografie [4]
Antropologia fisica [4]
Astronomia [3]
Storia della biologia [3]

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] assieme al seguente semplice lemma: [36] Un gruppo connesso può agire soltanto banalmente su una teoria coomologica invariante per omotopia si dimostra (Connes 1983c) che per ogni foliazione F di codimensione uno su una varietà compatta V con ... Leggi Tutto
CATEGORIA: GEOMETRIA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] i coefficienti della serie stessa. D'ora in poi si supporrà che tutti i gruppi di omologia di grado pari siano generati da classi di omologia di sottovarietà analitiche della varietà ambiente V. Ritornando alle notazioni della sezione precedente, sia ... Leggi Tutto
CATEGORIA: GEOMETRIA

Invarianti, Teoria degli

Enciclopedia della Scienza e della Tecnica (2007)

Invarianti, Teoria degli Claudio Procesi La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] omotopia. Questo fatto ha molte applicazioni importanti per lo studio della coomologia: ne menzioneremo solamente due. Prima di tutto la coomologia degli spazi simmetrici compatti G/H secondo Cartan (1929) si ottiene considerando l'azione del gruppo ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: DOMINIO A FATTORIZZAZIONE UNICA – TEORIA DELLE RAPPRESENTAZIONI – TEOREMA DI CAYLEY-HAMILTON – CORRISPONDENZA BIUNIVOCA – SEGNO DELLA PERMUTAZIONE
Mostra altri risultati Nascondi altri risultati su Invarianti, Teoria degli (6)
Mostra Tutti

omologia, gruppi di

Enciclopedia della Matematica (2013)

omologia, gruppi di omologia, gruppi di in topologia algebrica, sequenza di gruppi abeliani, solitamente denotati con Hn(C) (un gruppo per ogni numero intero n), che si associa a un qualsiasi complesso [...] : dati due spazi topologici X e Y omotopicamente equivalenti e due qualsiasi complessi simpliciali CX e CY che forniscono una triangolazione, rispettivamente, di X e Y, i gruppi di omologia simpliciale di CX e di CY sono isomorfi per ogni n. I ... Leggi Tutto
TAGS: OMOTOPICAMENTE EQUIVALENTI – COMPLESSO SIMPLICIALE – COMBINAZIONI LINEARI – COMPLESSO DI CATENE – BOTTIGLIA DI KLEIN

cobordismo

Enciclopedia on line

In matematica, nella topologia differenziale, teoria del c. (ideata da R. Thom attorno al 1954): se si considera la totalità delle varietà differenziabili compatte, prive di frontiera e aventi una stessa [...] , per ogni valore della dimensione n, a due gruppi abeliani detti gruppi di cobordismo. Si dimostra ( teorema di Thom) che essi sono isomorfi a certi gruppi di omotopia; per quanto riguarda poi i gruppi di c. che attengono alle varietà orientate, se ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA
TAGS: RELAZIONE DI EQUIVALENZA – GRUPPI ABELIANI – MATEMATICA – ISOMORFI

Bott, Raoul

Enciclopedia on line

Bott, Raoul Matematico ungherese (Budapest 1923 - San Diego 2005). Dal 1959 è stato prof. alla Harvard University, è uno dei più insigni cultori di geometria delle varietà differenziabili. Il fondamentale teorema [...] ortogonale O a infinite dimensioni; esso afferma che i gruppi di omotopia πm+2 (U) e πm (U) sono isomorfi per ogni valore di m e valgono 0 se m è pari e Z se m è dispari mentre per il gruppo O si ha un periodo di lunghezza 8 nel senso che πm+8 (O)∿πm ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SAN DIEGO – UNGHERESE – GEOMETRIA – BUDAPEST

Kuiper, Nicolaas Hendrik

Enciclopedia on line

Matematico nederlandese (Rotterdam 1920 - Heteren, Paesi Bassi, 1994). Prof. all'univ. di Amsterdam (dal 1962), direttore (dal 1971) dell'Institut des hautes études scientifiques di Bures-sur-Yvette. Apportò [...] notevoli contributi alla topologia differenziale (immersioni isometriche di una varietà in un'altra), alla teoria dell'omotopia (gruppi di omotopia del gruppo unitario negli spazî di Hilbert), alla statistica matematica e a varie applicazioni alle ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SPAZIO EUCLIDEO – NEDERLANDESE – PAESI BASSI – MATEMATICA – ROTTERDAM

La grande scienza. Cronologia scientifica: 1941-1950

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1941-1950 1941-1950 1941 Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] e studiano gli spazi topologici K(π,n) che hanno tutti i gruppi di omotopia nulli eccetto l'n-mo, che è isomorfo al gruppo π. Questi spazi si riveleranno di importanza cruciale in topologia. Teoria assiomatica dell'omologia e della coomologia. Samuel ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

GEOMETRIA: NUOVI ORIZZONTI

XXI Secolo (2010)

Geometria: nuovi orizzonti Luca Migliorini I tempi della matematica sono più lunghi di quelli di altre scienze. Per la natura stessa, semplice e fondamentale, degli oggetti studiati (i numeri e le figure [...] la cui definizione, che non daremo, è più complicata ma il cui calcolo è enormemente più facile di quello dei gruppi di omotopia. Lo studio di questi invarianti, delle loro relazioni e dei metodi per calcolarli, costituisce l’oggetto della topologia ... Leggi Tutto

topologia

Enciclopedia della Matematica (2013)

topologia topologia termine che indica sia un settore disciplinare della matematica sia la famiglia (o collezione) di insiemi aperti (o semplicemente aperti) che definisce uno → spazio topologico. La [...] , nonché lo sviluppo indipendente degli oggetti algebrici all’interno della topologia, per esempio i gruppi di omologia singolare o i gruppi di → omotopia, la locuzione topologia combinatoria è stata prima affiancata e poi scalzata quasi del tutto ... Leggi Tutto
TAGS: TEOREMA DEL PUNTO FISSO DI → BROUWER – PROBLEMA DEI → QUATTRO COLORI – CORRISPONDENZA BIUNIVOCA – VARIETÀ DIFFERENZIABILE – STORIA DELLA MATEMATICA
1 2 3 4
Vocabolario
omotopìa
omotopia omotopìa s. f. [comp. di omo- e gr. τόπος «luogo»]. – 1. In matematica, la corrispondenza generata tra due catene di un complesso quando la prima può variare con continuità nella seconda; più intuitivamente, per una superficie dello...
depòṡito
deposito depòṡito s. m. [dal lat. deposĭtum, part. pass. neutro sostantivato di deponĕre «deporre»]. – 1. a. Atto con cui si depone un oggetto in un luogo o lo si affida a una persona, perché venga custodito e riconsegnato a un’eventuale richiesta...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali