• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
144 risultati
Tutti i risultati [1387]
Matematica [144]
Arti visive [173]
Temi generali [158]
Fisica [149]
Biologia [135]
Archeologia [128]
Medicina [99]
Biografie [101]
Storia [77]
Chimica [77]

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] , motivando l'introduzione di un 'principio generale' secondo il quale organizzare le varie teorie solidi ci hanno portato a "scegliere il gruppo euclideo non come il solo vero, ma può scrivere come combinazione lineare di elementi della base a ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Vicino Oriente antico. La matematica

Storia della Scienza (2001)

Vicino Oriente antico. La matematica Jöran Friberg La matematica Gli esercizi metro-matematici nel III millennio La ricerca sulla matematica mesopotamica conobbe il suo periodo pionieristico a partire [...] scrittura è data da un numeroso gruppo di 'testi di ripartizione di campi le delimita. È inteso, naturalmente, che in generale i diametri sono proporzionali alla lunghezza dell'arco i concetti gemelli di similitudine 'lineare' e 'quadratica', ossia il ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] impedendo che ci si interessasse più in generale a una teoria delle funzioni reali di di Weierstrass ‒ proveniva infatti dal gruppo di Riemann che operava a Gottinga Gray 1985: Gray, Jeremy J., Linear differential equations and group theory from ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Solitoni

Enciclopedia del Novecento (1989)

Solitoni Francesco Calogero SOMMARIO: 1. Introduzione: cenno storico.  2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier.  3. L'equazione di Korteweg-de Vries.  4. La [...] xi; pertanto la soluzione generale delle equazioni del moto, nel caso lineare, si riduce a una dal punto di vista applicativo, motivò uno studio di questa equazione da parte di un gruppo di fisici teorici (C. S. Clardner, J. M. Greene, M. D ... Leggi Tutto
TAGS: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS – EQUAZIONE ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – SPAZIO DELLE CONFIGURAZIONI – EQUAZIONE DI SCHRÒDINGER
Mostra altri risultati Nascondi altri risultati su Solitoni (4)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] e simmetrica) o più in generale normale. Sia inoltre S un operatore lineare di Cn, che trasforma la ∣E(B)⋂D(A) : = AB è il generatore della restrizione (Ut∣E (B)) del dato gruppo e risulta σ (A) ⋂ B = σ (AB) (teoria spettrale di Arveson). Esempio 5. ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] (v., 1985): questo invariante, indicato generalmente con VK (t), è un polinomio come elemento di V*, è una applicazione lineare ∣b〉 : V → C (il campo algebra di Lie e il gruppo di Lie corrispondente a tale algebra è detto gruppo di gauge del campo. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

Scienza greco-romana. Archimede

Storia della Scienza (2001)

Scienza greco-romana. Archimede Reviel Netz Archimede Archimede è l’unico dei matematici greci di cui abbiamo notizie storiche; questa eccezionalità è dovuta in parte ai risultati da lui ottenuti, [...] può essere diviso in quattro gruppi. Il primo gruppo di lavori riguarda il cerchio questo argomento (le serie erano in generale di scarso interesse nella matematica greca, due movimenti, uno rotatorio e uno lineare, che generano una curva complicata. ... Leggi Tutto
CATEGORIA: BIOGRAFIE – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] Inoltre, ci fu un gruppo di matematici influenti, a cominciare A per vedere se vale o no P(x). In generale non c'è alcuna maniera di eseguire una tale verifica ostacolo per una ricostruzione semplice e lineare della matematica in conformità ai ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] di anni prima. Per esempio, la soluzione dell'equazione diofantea lineare ax+by=c, con a,b,c interi assegnati, è affermativa nel caso in cui G sia un gruppo risolubile. Il problema nel caso generale resta tuttora aperto. Teoria analitica dei numeri ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

Corrosione

Enciclopedia della Scienza e della Tecnica (2008)

Corrosione Luciano Lazzari I materiali a contatto con ambienti aggressivi subiscono un degrado chimico e fisico che, per quanto riguarda in particolare i metalli, è denominato corrosione. La corrosione [...] Fe, Co, Ni, Cr, Mo, Ti, i metalli del gruppo del Pt e i metalli di transizione). Infine i metalli intermedi ( contatto galvanico è data dall’espressione generale: [10] formula dove jcat è la resistenza di polarizzazione lineare, che fornisce la ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI
TAGS: INDUSTRIA PETROLCHIMICA – PRODOTTO INTERNO LORDO – COEFFICIENTE ANGOLARE – RESISTENZA ELETTRICA – CORROSIONE GALVANICA
Mostra altri risultati Nascondi altri risultati su Corrosione (7)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 15
Vocabolario
sistèma
sistema sistèma s. m. [dal lat. tardo systema, gr. σύστημα, propr. «riunione, complesso» (da cui varî sign. estens.), der. di συνίστημι «porre insieme, riunire»] (pl. -i). – 1. Nell’ambito scientifico, qualsiasi oggetto di studio che, pur...
ìndice
indice ìndice s. m. [dal lat. index -dĭcis, propr. «indicatore», der. del tema di indicare «indicare»]. – 1. In senso generico ed etimologico (da cui si sviluppano tutti i sign. particolari), qualsiasi cosa che serve a indicare. In origine...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali