• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
18 risultati
Tutti i risultati [81]
Analisi matematica [18]
Matematica [42]
Fisica [10]
Fisica matematica [9]
Biografie [7]
Storia della matematica [7]
Geometria [5]
Statistica e calcolo delle probabilita [4]
Meccanica quantistica [5]
Algebra [4]

teoria di Lebesgue

Enciclopedia della Scienza e della Tecnica (2008)

teoria di Lebesgue Luca Tomassini Complesso di idee e metodi che, sviluppatisi a partire dai lavori di Henri Lebesgue all’inizio del secolo scorso, vanno oggi sotto il nome di teoria della misura e [...] e) l’integrale (di Riemann) di una funzione non negativa esteso a un dominio di una, due o tre dimensioni. Il secondo, strettamente ) avviene con un limite. Il risultante integrale (detto integrale di Lebesgue) non coincide con quello di Riemann ma ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

integrabile

Dizionario delle Scienze Fisiche (1996)

integrabile integràbile [agg. Der. del lat. integrabilis] [LSF] Che può essere integrato, sia nel signif. matematico (→ integrale), sia per significare che si tratta di cosa che può essere aggiunta o [...] la funzione exp(-x2). ◆ [ANM] Funzione i.: una funzione f tale che esista l'integrale ∫C f dC; a seconda della natura di questo integrale si parla di funzione i. secondo Lebesgue, secondo Riemann, ecc.: v. misura e integrazione: III 3 f, 4 a. ◆ [MCC ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ANALISI MATEMATICA

analisi

Enciclopedia on line

Chimica Generalità L’a. chimica si occupa dei metodi che permettono di determinare la composizione chimica di un campione. Genericamente ha il significato di scissione in elementi più piccoli e loro esame, [...] funzione. Il lavoro di sistemazione rigorosa dell’a. continua nella seconda metà del secolo a opera di matematici di prim’ordine, fra teoria ricordiamo: l’estensione del concetto di integrale (B. Riemann, H. Lebesgue, T.J. Stieltjes) a classi sempre ... Leggi Tutto
CATEGORIA: FILOSOFIA DEL LINGUAGGIO – LINGUISTICA GENERALE – TEMI GENERALI – STRUMENTI MUSICALI – CHIMICA ANALITICA – CHIMICA FISICA – STRUMENTI – FISICA MATEMATICA – ANALISI MATEMATICA – STORIA E FILOSOFIA DEL DIRITTO – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DEL DIRITTO – METAFISICA – PEDAGOGIA – BIOGRAFIE – PSICANALISI – PSICOLOGIA COGNITIVA – PSICOLOGIA DELL ETA EVOLUTIVA – PSICOLOGIA GENERALE – PSICOLOGIA SOCIALE – PSICOLOGIA SPERIMENTALE – PSICOMETRIA – PSICOTERAPIA – STORIA DELLA PSICOLOGIA E DELLA PSICANALISI – ARCHIVISTICA BIBLIOGRAFIA E BIBLIOTECONOMIA
TAGS: PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – RISONANZA MAGNETICA NUCLEARE
Mostra altri risultati Nascondi altri risultati su analisi (3)
Mostra Tutti

integrale

Enciclopedia on line

In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per [...] , insieme ai simboli f(x)dx che lo seguono, il significato dell’integrale. La nozione qui esposta di i. definito è sostanzialmente dovuta a P. tra cui, particolarmente notevoli, l’i. secondo H. Lebesgue e l’i. secondo T.J. Stieltjes. I. di campo o ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI DI DUE O PIÙ VARIABILI – FUNZIONE DI VARIABILE COMPLESSA – INTEGRAZIONE PER SOSTITUZIONE – FUNZIONE DI VARIABILE REALE – INTERVALLO DI INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su integrale (3)
Mostra Tutti

variazione

Enciclopedia on line

Matematica Calcolo delle variazioni Ramo della matematica che studia i metodi per ottenere i massimi e i minimi di un insieme di elementi (in generale funzioni) considerati come punti di un opportuno spazio [...] modo tale che risulti minimo l’integrale dove y′ è la derivata di y. Un secondo problema, detto della curva brachistocrona, 1900), B. Levi (1906), G. Fubini (1906), H.-L. Lebesgue (1907) e soprattutto di L. Tonelli (1911). Sviluppi notevoli hanno ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONE DI PIÙ VARIABILI – CALCOLO DELLE VARIAZIONI – EQUAZIONE DIFFERENZIALE – SOLUZIONE GENERALIZZATA – SEMPLICEMENTE CONNESSO
Mostra altri risultati Nascondi altri risultati su variazione (1)
Mostra Tutti

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] x, u (x), u′ (x)). Si tratta di un'equazione lineare del secondo ordine rispetto alla funzione incognita w. Se (x, u (x), u′ senso di Lebesgue) su Ω. La convergenza in Lp (Ω) è definita nel modo seguente: un converge a u in Lp (Ω) se l'integrale ∫Ω ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] ≥ q 1) ha almeno un autovalore. Si riferisca A, secondo la (1), a una qualsivoglia base B di E; il teoria delle equazioni integrali, la seguente importante t), f ∈ H = L2 (μ) (μ è la misura di Lebesgue su [0, 1]); λ0 ∈ σ (A) è un autovalore quando λ ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] della prima circonferenza abbia coordinate (0,0), e il centro della seconda abbia coordinate (d,0), con d>0. Qualora la ∣u∣p sia integrabile nel senso di Lebesgue. Si dice che uk converge a u in Lp(ω) se l'integrale di ∣uk−u∣p tende a zero ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

Riemann Bernhard

Dizionario delle Scienze Fisiche (1996)

Riemann Bernhard Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] Integrale di R.-Liouville: v. trasformazione integrale: VI 297 b. ◆ [ANM] Integrale di R.-Stieltjes: v. misura e integrazione: IV 3 f. ◆ [ANM] Integrazione secondo c. ◆ [ALG] Teorema di R.-Lebesgue: v. trasformazione integrale: VI 299 c. ◆ [ALG] ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: METRICA RIEMANNIANA – VARIETÀ COMPLESSA – MATEMATICA – GOTTINGA – FIBRATI
Mostra altri risultati Nascondi altri risultati su Riemann Bernhard (5)
Mostra Tutti
1 2
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali