Termine con cui è anche chiamata l'algebra combinatoria, disciplina che studia, piuttosto che le strutture algebriche classiche (gruppo, anello, corpo, ecc.), le strutture algebriche di tipo più semplice, [...] costruzione dei gruppi semplici finiti e quello della geometria algebrica, spingevano nella stessa direzione. Le geometrie finite, cui lo spazio consta di funzioni sui naturali o sugli interi e la trasformazione è indotta da uno shift. Le iterazioni ...
Leggi Tutto
Conformità o equivalenza tra più parti, termini, elementi.
Biologia
Concetto che esprime il rapporto fra organi o strutture morfologiche propri di categorie tassonomiche diverse (fig. 1), ma aventi la [...] ’o. costituisce uno dei capitoli centrali della topologia algebrica. Essa si propone di esprimere proprietà geometriche e di un certo numero rp di copie del gruppo additivo Z degli interi, mentre Tp si può a sua volta ottenere come somma diretta di ...
Leggi Tutto
(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131).
Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] P una delle seguenti proprietà della funzione f: (i) f è una funzione razionale; (ii) f è una funzione algebrica; (iii) f è una soluzione classica. Per un intero J con i≤J≤vi, sia (q, p) una soluzione del sistema SJ(v). Diciamo che la soluzione (q ...
Leggi Tutto
Algebra
Irving Kaplansky
sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] sui numeri razionali.
Molte applicazioni ha avuto l'anello di gruppo ZG di G sull'anello Z degli interi, di cui ci occuperemo nel cap. 17, dedicato all'algebra omologica.
Il libro di Passman (v., 1971) è una ampia monografia sugli anelli di gruppo di ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. L'algebra e il suo ruolo unificante
Roshdi Rashed
L'algebra e il suo ruolo unificante
La seconda metà del VII sec. vede il costituirsi [...] ai polinomi. Ed è proprio questo calcolo sulle espressioni algebriche della forma:
con m e n interi non negativi, che diventa l'oggetto principale dell'algebra. La teoria delle equazioni algebriche è certamente sempre presente, ma occupa un posto ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] mai la luce, ma la sua presenza è evidente nel corpo dell’Algebra, il cui terzo libro viene completamente rimaneggiato e nell’edizione a stampa è quasi interamente dedicato a problemi diofantei. Da questo momento l’analisi diofantea viene integrata ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] lo precede), e nCk=nPk/k! (dove k! è il prodotto degli interi da 1 a k, cioè, in altre parole, il numero delle permutazioni, od . L'incontro tra le sue ricerche sulle tracce delle algebre di von Neumann e le rappresentazioni del gruppo delle trecce ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] rappresentare come prodotto di due polinomi di grado positivo a coefficienti razionali. Se a=1 allora α si definisce interoalgebrico. I numeri non algebrici si dicono trascendenti. Già nel 1844 Joseph Liouville aveva dimostrato che se α è un numero ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] e la topologia di Zariski.
Il terzo capitolo è dedicato alle algebre graduate di tipo finito e agli anelli e moduli filtrati. decomposizione primaria. Il quinto capitolo discute gli elementi interi, il problema del sollevamento degli ideali primi e ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] vedremo che per numeri più generali non è nemmeno vero. A titolo di esempio, chiediamoci se il numero algebrico
sia irrazionale, o intero; o se uguagli
,
oppure 6; sarà vera una tra queste alternative?
Numeri trascendenti
Abbiamo ricordato che l ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
problema
problèma s. m. [dal lat. problema -ătis «questione proposta», gr. πρόβλημα -ατος, der. di προβάλλω «mettere avanti, proporre»] (pl. -i). – 1. Ogni quesito di cui si richieda ad altri o a sé stessi la soluzione, partendo di solito...