• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
34 risultati
Tutti i risultati [47]
Matematica [34]
Fisica [21]
Geometria [15]
Fisica matematica [15]
Algebra [13]
Relativita e gravitazione [8]
Analisi matematica [5]
Storia della fisica [6]
Meccanica [6]
Meccanica quantistica [6]

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] l'operatore di Dirac. Si può familiarizzare con questa nozione controllando che si ritrovi l'elemento di volume della metrica riemanniana con l'uguaglianza (valida a meno di una costante di normalizzazione): Il primo punto interessante è che, oltre ... Leggi Tutto
CATEGORIA: GEOMETRIA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] è piatta in C{p1,…,pn} e che ha singolarità in p1,…,pn. Ciò può essere visto come un modo di discretizzare il dato di una metrica riemanniana su C (e dunque di una struttura complessa) concentrandone la curvatura nei vertici del grafo Γ (fig. 17). La ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] parallelo di un vettore secondo Levi-Civita definisce in modo intrinseco una connessione affine compatibile con la metrica riemanniana della superficie. La nozione di connessione affine permette a sua volta di definire la derivata covariante, che ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

CACCIOPPOLI, Renato

Dizionario Biografico degli Italiani (1973)

CACCIOPPOLI, Renato Alessandro Figà Talamanca Nacque a Napoli il 20 genn. 1904. Suo padre, Giuseppe, era un noto chirurgo napoletano, sua madre, Sofia, era figlia del celebre rivoluzionario russo Michail [...] del principio generale di inversione, per trattare il problema dell'esistenza di una superficie chiusa e convessa di assegnata metrica riemanniana. Il lavoro Sui teoremi di esistenza di Riemann, in Ann. d. Scuola normale sup. di Pisa, s. 2, VII ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DELLE VARIAZIONI – TEORIA DELL'INTEGRAZIONE – INTEGRALE DI STIELTJES – ACCADEMIA DEI LINCEI
Mostra altri risultati Nascondi altri risultati su CACCIOPPOLI, Renato (4)
Mostra Tutti

tensore di Ricci

Enciclopedia della Scienza e della Tecnica (2008)

tensore di Ricci Gilberto Bini Sia M una varietà dotata di una metrica riemanniana. Indichiamo rispettivamente con gij e con Rijkl le espressioni locali della metrica riemanniana e delle componenti [...] spazio euclideo ordinario. Infatti, su una varietà riemanniana esistono delle coordinate locali rispetto alle quali i coefficienti gij della metrica possono essere approssimati da quelli della metrica euclidea a meno di termini quadratici. Rispetto ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – VARIETÀ RIEMANNIANA – METRICA EUCLIDEA – SPAZIO EUCLIDEO – MATRICE INVERSA
Mostra altri risultati Nascondi altri risultati su tensore di Ricci (1)
Mostra Tutti

simboli di Christoffel

Enciclopedia della Scienza e della Tecnica (2008)

simboli di Christoffel Gilberto Bini Sia M una varietà dotata di una metrica riemanniana. Ricordiamo che essa si può esprimere localmente nella forma dove (gik) è una matrice n×n hermitiana definita [...] positiva che dipende dalle coordinate u1,...,un. I simboli di Christoffel relativi alla metrica sono definiti nel modo seguente: Per alleggerire le notazioni, si applica l’usuale convenzione secondo la quale un indice ripetuto in ogni addendo (in ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – METRICA RIEMANNIANA – MATRICE INVERSA – TENSORI
Mostra altri risultati Nascondi altri risultati su simboli di Christoffel (1)
Mostra Tutti

riemanniano

Dizionario delle Scienze Fisiche (1996)

riemanniano riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] retta complessa è il piano della variabile complessa, o piano sfera oppure la superficie di una sfera; in modo analogo si può definire la r. di una superficie. ◆ [RGR] [ALG] Varietà r.: varietà sulla quale si sia stabilita una metrica riemanniana. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – EPISTEMOLOGIA – METAFISICA

euclideo

Dizionario delle Scienze Fisiche (1996)

euclideo euclidèo [agg. Der. di Euclide] [ALG] [FAF] Qualifica di ente matematico o di sistema ipotetico-deduttivo che soddisfi i postulati di Euclide. ◆ [ALG] Algoritmo e. delle divisioni successive: [...] e. (v. oltre) a qualsivoglia numero n di dimensioni; si tratta di un caso particolare di metrica riemanniana. ◆ [ALG] Norma e.: è quella che corrisponde alla metrica di uno spazio e. (v. oltre). ◆ [ALG] Piano e.: piano in cui sono valide le nozioni ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – EPISTEMOLOGIA – METAFISICA

metrica

Enciclopedia on line

Letteratura Disciplina che ha per oggetto lo studio della versificazione, fondata su un complesso di norme che variano secondo la natura di ciascuna lingua e le convenzioni che si stabiliscono in rapporto [...] l’esametro di Ennio non è quello di Claudiano. Lettura metrica e accento  Per lunga tradizione si è soliti scandire i massimo). La m. iperbolica è un altro caso particolare di m. riemanniana, in cui la somma degli angoli di un triangolo è sempre ... Leggi Tutto
CATEGORIA: METRICA – ANALISI MATEMATICA
TAGS: DISUGUAGLIANZA TRIANGOLARE – VARIETÀ DIFFERENZIABILE – DE VULGARI ELOQUENTIA – LINGUA SERBO-CROATA – POESIA DIDASCALICA
Mostra altri risultati Nascondi altri risultati su metrica (3)
Mostra Tutti

Grossmann, Marcel

Enciclopedia on line

Grossmann, Marcel Matematico (Budapest 1878 - Zurigo 1936), professore presso il politecnico di Zurigo. Negli anni 1912-13 G. contribuì all'abbandono da parte di A. Einstein della teoria scalare della gravitazione e alla [...] formulazione della prima teoria tensoriale metrica della gravitazione basata sulla geometria riemanniana e sul calcolo differenziale assoluto di G. Ricci e T. Levi-Civita; la collaborazione di G. con Einstein portò nel 1913 alla pubblicazione della ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: GEOMETRIA RIEMANNIANA – CALCOLO DIFFERENZIALE – BUDAPEST – ZURIGO
1 2 3 4
Vocabolario
mètrica
metrica mètrica s. f. [femm. sostantivato dell’agg. metrico; nel sign. 1, cfr. gr. μετρική (sottint. τέχνη «arte»)]. – 1. La tecnica della versificazione, cioè il complesso delle leggi che regolano la composizione dei versi e delle strofe;...
riemanniano
riemanniano 〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali