spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] misuradi Radon. Rispetto alla misura si definisce una famiglia normale di funzioni o funzioni ortonormali.
S. di si chiama uno s. T1 (con la stessa terminologia uno s. diHausdorff si chiama anche s. T2). Un’altra classe notevole è quella degli ...
Leggi Tutto
Flavio Pressacco
Insieme di elementi, interpretabili in astratto come ‘punti’, sui quali sono definite operazioni algebriche o insiemistiche che godono di opportune proprietà. Ogni s. possiede una sua struttura. Per es., uno s. topologico è basato su una struttura di vicinanza o formalmente sul concetto ... ...
Leggi Tutto
Il luogo in cui gli oggetti reali appaiono collocati. Il concetto di s., come quello di tempo (➔), è stato assai discusso e variamente inteso, cosicché la storia di tale problema viene a riflettere, da un certo angolo visuale, l’intera storia della filosofia. In linea generale, si possono distinguere ... ...
Leggi Tutto
Luca Tomassini
L’oggetto di studio della geometria non-commutativa. Il fondamento concettuale della nozione di spazio non-commutativo è fornito dal teorema di Gelfand, che stabilisce una corrispondenza biunivoca tra C*-algebre commutative con identità e algebre C0(X,ℂ) di funzioni continue a valori ... ...
Leggi Tutto
Walter Maraschini
Molto più che tre dimensioni
Con il termine spazio si intendono molte cose diverse: quando si dice che un oggetto occupa un certo spazio, esso può essere inteso come l’ambiente in cui scambiamo le nostre esperienze, viviamo e ci muoviamo. Se però si parla di ‘guerre stellari’ ci si ... ...
Leggi Tutto
Paolo Casini
Spazio è un sostantivo polisenso che designa in generale un'estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, psicologico, geometrico, fisico, astronomico, geografico, architettonico, ... ...
Leggi Tutto
spàzio [Der. del lat. spatium, probab. da patere "essere aperto"] [FAF] Con signif. intuitivo astratto e assoluto, il luogo illimitato in cui tutti gli oggetti materiali appaiono collocati, di cui occupano una parte e in cui hanno una posizione che è definita, mediante la geometria spaziale, dalle coordinate ... ...
Leggi Tutto
(XXXII, p. 315; App. III, 11, p. 789)
Vittorio Dalla Volta
Matematica. - Oggi si considerano quasi esclusivamente s. topologici, con l'aggiunta di eventuali altre strutture (per es., di s. vettoriale), e pertanto ci occuperemo prevalentemente degli s. topologici, ampliando la trattazione già data ... ...
Leggi Tutto
(XXXII, p. 315)
Vittorino DALLA VOLTA
Dello s. è stato detto, nella voce citata, essenzialmente dal punto di vista della storia e della filosofia della scienza; qui, invece, ne tratteremo dal punto di vista matematico, attenendoci a trattazioni recenti. Sotto l'ultimo aspetto, il termine s. non ha, ... ...
Leggi Tutto
Goffredo COPPOLA
Guido CALOGERO
Federigo ENRIQUES
. La questione della natura dello spazio è una tra le più dibattute attraverso tutto lo sviluppo della speculazione umana, cosicché la storia di tale problema viene a riflettere, da un certo angolo visuale, l'intera storia della filosofia. Sul ... ...
Leggi Tutto
In matematica, termine coniato nel 1975 dal matematico francese B. Mandelbrot per indicare un particolare ente geometrico la cui forma è invariante nel cambiamento della scala delle lunghezze (proprietà [...] N(ε), al diminuire di ε aumenta come N(ε)∝ε−DF. Qualche volta DF viene chiamata dimensione diHausdorff (quest’ultima ha una lunghezza aumenta al diminuire della lunghezza di risoluzione, e, dello strumento dimisura. Per es., la costa inglese ...
Leggi Tutto
Leggi di scala
Luciano Pietronero
Le leggi di scala riguardano il comportamento di una struttura in funzione della scala da cui la si guarda. Per i sistemi regolari, sia matematici sia fisici e naturali, [...] diHausdorff. In realtà si possono identificare leggi di scala anche per proprietà diverse e più generali. Gli esempi di questo tipo di e propagazione degli errori casuali in qualunque tipo dimisura sperimentale. Altri esempi si possono trovare nei ...
Leggi Tutto
dimensione
dimensióne [Der. del lat. dimensio -onis "misura", dal part. pass. dimensus di dimetiri "misurare"] [MCQ] D. anomala: una d. operatoriale diversa da quella canonica di una data teoria. ◆ [MCC] [...] S con insiemi aperti si può inscrivere un ricoprimento finito di molteplicità ≤n+1. Per signif. particolari (d. diHausdorff, ecc.) si rimanda al termine di qualificazione. ◆ [FML] D. frattale: l'estensione a insiemi limitati arbitrari della nozione ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...