misuramisura [Der. del lat. mensura, dal part. pass. mensus di metiri "misurare"] [LSF] Il valore di una grandezza, espresso come rapporto tra la grandezza data e un'altra grandezza della stessa specie [...] superiore: m. secondo Peano-Jordan, secondo Lebesgue, ecc., alcune delle quali sono ricordate più oltre, mentre per altre si rinvia al nome di qualificazione, e per il concetto generale di m. si rinvia a misura e integrazione. ◆ [PRB] M. aleatoria a ...
Leggi Tutto
In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per [...] all’intervallo (a, b), dà la misuradi questo). Analogamente l’i. triplo della funzione diLebesgue. - È una generalizzazione del concetto di i. di una funzione reale di punto. L’importanza della generalizzazione sta nel fatto che l’i. diLebesgue ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] ) in Germania, conoscevano l'integrale diLebesgue, e Riesz seguiva da vicino il lavoro di Hilbert. Nello stesso anno, inoltre della quadratura delle superfici e, più in generale, della misuradi varietà k-dimensionali in uno spazio a n dimensioni.
...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] su [a,b].
In base a un classico teorema di Henri-Léon Lebesgue (1875-1941), ogni funzione u di AC([a,b]) è derivabile in tutti i punti di [a,b], eccettuato al più un insieme di punti dimisura unidimensionale nulla, e quindi F(u) è ben definito ...
Leggi Tutto
Regola di condotta, stabilita d’autorità o convenuta di comune accordo e di origine consuetudinaria, che ha per fine di guidare il comportamento dei singoli o della collettività, di regolare un’attività [...] misura la capacità contributiva manifestataa dal presupposto), nelle modalità di calcolo dell’imposta. Le n. di carattere sostanziale, a differenza delle n. didiLebesgue Ln delle funzioni a potenza n-esima sommabile su un dominio Ω la n. di una ...
Leggi Tutto
Borel Felix-Edouard-Emile
Borel ⟨borèl⟩ Félix-Edouard-Émile [STF] (Saint-Affrique, Aveyron, 1871 - Parigi 1956) Prof. di matematica nell'univ. di Parigi (1909); socio straniero dei Lincei (1918). ◆ [ANM] [...] 780 c. ◆ [ALG] Insieme di B.: → boreliano. ◆ [PRB]2 Lemma di B.-Cantelli: v. probabilità classica: IV 583 a. ◆ [ANM] Misuradi B. o di B.-Lebesgue: v. misura e integrazione: IV 2 e. ◆ [ANM] Misuradi B.-Lebesgue in R2: v. misura e integrazione: IV 5 ...
Leggi Tutto
Vitali Giuseppe
Vitali Giuseppe [STF] (Ravenna 1875 - Bologna 1932) Prof. di analisi matematica nelle univ. di Modena (1923), Padova (1926) e Bologna (1930). ◆ [ANM] Teorema di derivazione diLebesgue-V.: [...] v. misura e integrazione: IV 4 c. ...
Leggi Tutto
Matematica
Calcolo delle variazioni
Ramo della matematica che studia i metodi per ottenere i massimi e i minimi di un insieme di elementi (in generale funzioni) considerati come punti di un opportuno spazio [...] Lebesgue (1907) e soprattutto di L. Tonelli (1911). Sviluppi notevoli hanno avuto gli studi sulla superficie di area minima, come soluzioni del problema di l’insieme S, che varia tra i sottoinsiemi di Ω dimisura (n−1)-dimensionale finita, e l’altra è ...
Leggi Tutto
Riemann Bernhard
Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] le sue componenti covarianti. ◆ [ALG] Teorema di esistenza di R.: v. Riemann, superfici di: V 4 c. ◆ [ALG] Teorema di R.-Lebesgue: v. trasformazione integrale: VI 299 c. ◆ [ALG] Teorema di R.-Roch: v. superfici di Riemann: V 5 c. ◆ [MCF] Variabili ...
Leggi Tutto
integrabile
integràbile [agg. Der. del lat. integrabilis] [LSF] Che può essere integrato, sia nel signif. matematico (→ integrale), sia per significare che si tratta di cosa che può essere aggiunta o [...] funzione f tale che esista l'integrale ∫C f dC; a seconda della natura di questo integrale si parla di funzione i. secondo Lebesgue, secondo Riemann, ecc.: v. misura e integrazione: III 3 f, 4 a. ◆ [MCC] Sistema i.: un sistema meccanico hamiltoniano ...
Leggi Tutto