Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] se, per es., C è il c. razionale, C̅ è il cosiddetto c. dei numerialgebrici (radici di equazioni a coefficienti razionali). Dire che non tutti i numeri reali sono algebrici, equivale a dire che il c. reale non può essere ottenuto da quello razionale ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] pseudofiniti sono elementarmente equivalenti se e solo se hanno gli stessi numeri 'assoluti', cioè numerialgebrici sul campo primo. Dato un enunciato E, esiste un enunciato λ riguardante i numeri assoluti tale che E equivale a λ in ogni campo finito ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] dominio di razionalità. Quest'ultimo è un'estensione finita del campo dei numeri razionali (esistono anche estensioni infinite: König fornisce l'esempio del campo di tutti i numerialgebrici).
L'argomento di maggiore interesse del libro di König è la ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] leggi di reciprocità e al teorema di Fermat. D'altra parte i matematici del XIX sec. si interessavano anche ad altri numerialgebrici, cioè ai numeri θ soluzioni di equazioni della forma anθn+an−1θn−1+…+a1θ+a0=0, con gli ai interi ordinari. Lo studio ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] , con il quale era entrato in corrispondenza, a classificare gli insiemi infiniti secondo la loro 'potenza' ‒ insiemi numerabili come i numeri razionali e i numerialgebrici, che si potevano mettere in corrispondenza biunivoca con l'insieme dei ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] alle concezioni di Dedekind nel proseguire lo studio dei campi astratti, che non sono però intesi come domini di numeri (algebrici, reali o complessi), come pensava Dedekind, bensì "come strutture formali del tutto prive di ogni riferimento a una ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] . si è evidenziata una certa analogia tra teoria dei numerialgebrici e geometria algebrica; più precisamente, tra l'anello dei numerialgebrici e quello delle funzioni algebriche. Il libro Algèbre commutative (AC) si propone di sviluppare concetti ...
Leggi Tutto
L'Eta dei Lumi: matematica. La teoria dei numeri
Günther Frei
La teoria dei numeri
La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] del campo ciclotomico delle radici cubiche dell'unità
preparando in tal modo il terreno allo studio dell'aritmetica dei numerialgebrici. Per l'esponente n=5 Legendre e Dirichlet riuscirono a dimostrare la congettura di Fermat nel 1825, e la ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] Lejeune Dirichlet (v. la [33]). Teiji Takagi (1875-1960) la dimostrò nel 1920 nel caso generale in cui K/k è un'estensione abeliana di un campo di numerialgebrici. Che zK(s)/zk(s) sia una funzione intera se K/k è un'estensione normale di un campo di ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...