• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
46 risultati
Tutti i risultati [152]
Matematica [46]
Fisica [39]
Temi generali [17]
Meccanica quantistica [15]
Chimica [13]
Analisi matematica [14]
Fisica matematica [13]
Economia [12]
Storia della fisica [12]
Algebra [10]

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] precisa controverse nozioni come quella di infinito (una variabile i cui "valori numerici crescono sempre di più in modo da superare ogni numero dato") e quella di infinitesimo (una variabile "che ha zero come limite"), per mezzo della quale Cauchy ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] esattamente quanto accade per operatori non autoaggiunti. In questo dizionario sono considerati anche gli infinitesimi, ossia quantità minori di un qualunque numero reale ε positivo, diverse da zero. Se è troppo richiedere che la norma dell'operatore ... Leggi Tutto
CATEGORIA: GEOMETRIA

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] che non si annulla in quel punto corrisponde a un indice [numero di differenziazioni] pari e mantiene sempre un segno costante" ( dt è determinata dalla differenza tra il calore che entra nel cubo infinitesimo e il calore che ne esce. Sia v(x,y,z,t ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Algebra, geometria, indivisibili

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

Algebra, geometria, indivisibili Enrico Giusti Primi progressi nell’algebra Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] delle manipolazioni algebriche, basterà dotare le linee di Cavalieri di un’altezza infinitesima perché non sia più paradossale il fatto che la somma di un numero infinito di grandezze (ognuna delle quali infinitamente piccola) dia un risultato finito ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA
TAGS: EQUAZIONE DI SECONDO GRADO – PARALLELEPIPEDO RETTANGOLO – METODO DEGLI INDIVISIBILI – EQUAZIONE DI QUARTO GRADO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su Algebra, geometria, indivisibili (2)
Mostra Tutti

Geometria non commutativa

Enciclopedia della Scienza e della Tecnica (2007)

Geometria non commutativa Alain Connes Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo allora la teoria generale della relatività dà chiaramente ragione a Carl [...] e ciò è esattamente quanto accade per operatori non autoaggiunti. In questo dizionario sono considerati anche gli infinitesimi, ossia quantità minori di un qualunque numero reale ε positivo e diverse da zero. Se è troppo richiedere che la norma dell ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – APPROSSIMAZIONE SEMICLASSICA – ELETTRODINAMICA QUANTISTICA – GRUPPO DI RINORMALIZZAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

Stocastica

Enciclopedia del Novecento (1984)

MMark Kac di Mark Kac SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] generato dall'equazione di Langevin (91). Le condizioni infinitesime, mentre nel lavoro di Kolmogorov appaiono un po' tali che P(Yi〈τ)=1−exp(−aτ), a〈0, (110) allora Na(t) è il numero delle somme Y1, Y1+Y2, Y1+Y2+Y3, ..., minori di t; in altre parole, ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – COEFFICIENTE DI CORRELAZIONE – GENETICA DELLE POPOLAZIONI – OSSERVAZIONE SPERIMENTALE – EQUAZIONE DI SCHRÖDINGER
Mostra altri risultati Nascondi altri risultati su Stocastica (2)
Mostra Tutti

L'Età dei Lumi: matematica. Le equazioni differenziali

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Le equazioni differenziali Silvia Mazzone Clara Silvia Roero Le equazioni differenziali E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] il differenziale dell'ascissa dx=b costante, infinitesimo, alla successione delle ascisse in progressione che il cammino più veloce avviene lungo un arco di cerchio. Sul numero di maggio degli "Acta Eruditorum" del 1697 compaiono ben sei soluzioni ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] un'approssimazione infinitesima. Analogamente per le connessioni conformi. Così, nell'infinitesimo, il allora χ(M) è dato da χ(M)=v−e+f. (55) Alternativamente, se bi è l'i-mo numero di Betti di M, cioè bi=dim Hi(M;R), allora χ(M)=b0−b1+b2=2−b1. (56) ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] nullo. Ma se si richiede che P′ sia un punto a distanza infinitesima da P, una nozione che si può rendere precisa, allora la definizione come, per es., la fase, che è descritta da un numero complesso di modulo 1), allora si ricorre a fibrati di altro ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Computazionali, metodi

Enciclopedia della Scienza e della Tecnica (2007)

Computazionali, metodi Alfio Quarteroni I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] K(d) la seguente stima: K(d)=∥f′'(d)∥∙∥d∥/∥f(d)∥ (avendo trascurato infinitesimi di ordine superiore a ∥δd∥). Con ragionamenti del tutto analoghi possiamo associare al modello numerico un numero di condizionamento Kn(dn)=∥f′n(dn)∥∙∥dn∥/∥fn(dn)∥. Se l ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMA DI EQUAZIONI, LINEARI – METODO DEGLI ELEMENTI FINITI
1 2 3 4 5
Vocabolario
eleménto
elemento eleménto s. m. [dal lat. elementum (di origine incerta), con cui i Latini rendevano i varî significati del gr. στοιχεῖον «principio, rudimento, lettera dell’alfabeto»]. – 1. Nel sign. più ampio, si dicono elementi le sostanze semplici...
ricavo¹
ricavo1 ricavo1 s. m. [der. di ricavare]. – 1. raro. L’operazione, il lavoro di ricavare, cioè di cavare fuori, estrarre o trarre: luogo di r. (di terra, pietre, ecc.). 2. Somma di denaro che si ricava dalla vendita o rivendita di un prodotto,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali