• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
109 risultati
Tutti i risultati [364]
Matematica [109]
Fisica [53]
Storia della matematica [43]
Biografie [36]
Analisi matematica [35]
Temi generali [26]
Storia della fisica [26]
Fisica matematica [21]
Algebra [18]
Religioni [17]

L'Età dei Lumi: matematica. Il calcolo delle variazioni

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Il calcolo delle variazioni Ivor Grattan-Guinness Il calcolo delle variazioni Il calcolo in una e più variabili Una volta sviluppata la teoria della differenziazione e integrazione [...] λ divennero noti come 'moltiplicatori di Lagrange'. Il suo approccio alla meccanica rappresentava un'alternativa formidabile alla tradizione newtoniana e a quelle basate sull'energia, sebbene i suoi punti di forza fossero soprattutto le situazioni ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Ruffini, Paolo

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

Paolo Ruffini Francesco Barbieri Franca Cattelani Degani Paolo Ruffini, medico e matematico, deve la sua fama principalmente ai risultati ottenuti nel campo delle equazioni algebriche, anche se i suoi [...] per l’individuazione e il calcolo delle radici con procedimenti di approssimazione numerica. Partendo ancora una volta dai risultati di Lagrange, che aveva messo a punto un procedimento lungo e laborioso, nel 1802 la Società italiana delle scienze ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ALEXANDRE-THÉOPHILE VANDERMONDE – FUNZIONE RAZIONALE INTERA – CALCOLO DELLE PROBABILITÀ – PIETRO ABBATI MARESCOTTI – GIUSEPPE LUIGI LAGRANGE
Mostra altri risultati Nascondi altri risultati su Ruffini, Paolo (5)
Mostra Tutti

BELTRAMI, Eugenio

Dizionario Biografico degli Italiani (1966)

BELTRAMI, Eugenio Nicola Virgopia Nacque a Cremona il 16 nov. 1835. Compiuti gli studi secondari nel ginnasio liceo di Cremona, s'iscrisse nel 1853 alla scuola di matematica dell'università di Pavia, [...] più geniali che gli guadagnarono fama mondiale. A tale gruppo di ricerche fu condotto da una osservazione fatta da L. Lagrange in una delle sue memorie sulle carte geografiche. Riportare i punti di una superficie sopra un piano in modo che le linee ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ACCADEMIA DELLE SCIENZE DI TORINO – ACCADEMIA DELLE SCIENZE DI PARIGI – EQUAZIONE DIFFERENZIALE – GEOMETRIA DIFFERENZIALE – GEOMETRIA ANALITICA
Mostra altri risultati Nascondi altri risultati su BELTRAMI, Eugenio (4)
Mostra Tutti

energia

Dizionario delle Scienze Fisiche (1996)

energia energìa [Der. del lat. energia, dal gr. enérgeia, da érgon "lavoro"] [LSF] Capacità che un corpo o un sistema di corpi ha di compiere lavoro, sia come e. in atto, cioè che opera nel processo [...] di correlazione: v. Hartree-Fock, metodo di: III 150 a. ◆ [FSD] E. di deformazione: v. elasticità, teoria dell': II 253 f. ◆ [CHF] E. di legame: → legame. ◆ [MCQ] E. di punto un integrale primo delle equazioni di Lagrange: v. meccanica analitica: III ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ASTROFISICA E FISICA SPAZIALE – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su energia (13)
Mostra Tutti

L'Ottocento: matematica. Teoria degli invarianti

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria degli invarianti Leo Corry Teoria degli invarianti L'algebra del XIX sec. ebbe uno sviluppo intenso che coprì numerosi domini. Nuove entità matematiche come gruppi, anelli [...] di Boole traeva spunto dallo studio di Joseph-Louis Lagrange (1736-1813) sulle trasformazioni lineari di polinomi omogenei. Data una forma binaria omogenea f(x1,x2) di puramente geometriche sui punti di flesso della curva di equazione f=0 ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

BETTI, Enrico

Dizionario Biografico degli Italiani (1967)

BETTI, Enrico Nicola Virgopia Nacque a Pistoia il 21 ott. 1823; compiuti qui gli studi classici, si laureò in matematica nel 1846 presso l'università di Pisa, dove ebbe come maestro O. F. Mossotti. [...] -12 integrazioni (per cui l'analogo caso di Lagrange dipenderebbe solo da 6integrazioni); e dimostrò poi come, mediante una quadratura, si possa giungere alla determinazione della posizione degli n punti nello spazio. Un altro problema che interessò ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SCUOLA NORMALE SUPERIORE DI PISA – SCIENZA DELLE COSTRUZIONI – PROBLEMA DEI TRE CORPI – ACCADEMIA DEI LINCEI – FUNZIONI ELLITTICHE
Mostra altri risultati Nascondi altri risultati su BETTI, Enrico (6)
Mostra Tutti

formule di Newton-Cotes

Enciclopedia della Scienza e della Tecnica (2008)

formule di Newton-Cotes Alfio Quarteroni Per calcolare numericamente l’integrale definito I(f)=∫∮]] f (x)dx, le formule di Newton-Cotes si ottengono sostituendo la funzione integranda f(x) con un polinomio [...] equispaziati in [a,b]. Se indichiamo con {x}}{[}=0 i nodi di interpolazione e con {L}(x)}{[}=0 i polinomi di Lagrange di grado n definiti sui nodi {x}}, ovvero dei polinomi algebrici di grado n tali che L∥(x})=δ∥} per i,j=0,…,n, l’approssimazione ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FORMULE DI NEWTON-COTES – POLINOMIO DI LAGRANGE – INTEGRALE DEFINITO – ALFIO QUARTERONI – INTERPOLAZIONE
Mostra altri risultati Nascondi altri risultati su formule di Newton-Cotes (1)
Mostra Tutti

valore

Enciclopedia on line

Economia Definizioni Capacità di un bene di soddisfare un bisogno, ma anche, nel senso più comune di v. di scambio, il prezzo relativo del bene stesso, cioè la sua capacità di acquistare altri beni. V. [...] b|, |a/b|=|a|/|b|. Teorema del v. medio nel calcolo differenziale (o teorema di Lagrange) Se f(x) è una funzione continua nell’intervallo (a, b) e derivabile nell’interno, esiste un punto interno x0 tale che risulta f(b)−f(a)=f′(x0)(b−a). Espresso in ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – DIRITTO PRIVATO – STORIA E FILOSOFIA DEL DIRITTO – CONTABILITA – METODI TEORIE E PROVVEDIMENTI – MONETAZIONE – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DEL DIRITTO
TAGS: AMMINISTRAZIONE PUBBLICA – CALCOLO DIFFERENZIALE – MONETA A CORSO LEGALE – ELEMENTO OGGETTIVO – FUNZIONE CONTINUA

analisi non lineare

Enciclopedia on line

Ramo della matematica che si occupa delle tematiche legate al calcolo delle variazioni, affrontando problemi nei quali non sono direttamente applicabili i metodi classici dell'analisi lineare. Abstract [...] , non solo i minimi ma tutti i punti critici di un funzionale sono soluzioni dell’equazione di Euler-Lagrange e in molti casi può accadere che le soluzioni non banali di tale equazione siano invece dei punti di sella. La loro determinazione è l ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DIFFERENZIALE – PROBLEMA ISOPERIMETRICO – ANALISI MATEMATICA

PROGRAMMAZIONE NON LINEARE

Enciclopedia Italiana - V Appendice (1994)

PROGRAMMAZIONE NON LINEARE Amato Herzel (App. IV, III, p. 70) Sia nel campo metodologico, sia in quello computazionale, si sono registrati negli ultimi tempi notevoli progressi. Ci si limiterà qui a [...] y, si forma la funzione di Lagrange del problema: Differenziando rispetto a x, ponendo il gradiente uguale a zero e ricordando le condizioni di Kuhn-Tucker si ottiene il seguente sistema: Le soluzioni del problema [3] sono i punti di Kuhn-Tucker del ... Leggi Tutto
TAGS: PROGRAMMAZIONE LINEARE – TEORIA DEI GIOCHI – SERIE DI TAYLOR – PUNTI DI SELLA – LAGRANGIANA
Mostra altri risultati Nascondi altri risultati su PROGRAMMAZIONE NON LINEARE (2)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 11
Vocabolario
lagrangiano
lagrangiano agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali