• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
109 risultati
Tutti i risultati [109]
Matematica [47]
Geometria [16]
Fisica [17]
Storia della matematica [18]
Analisi matematica [12]
Storia della fisica [12]
Algebra [11]
Temi generali [8]
Fisica matematica [10]
Filosofia [7]

Riemann, sfera di

Enciclopedia della Matematica (2013)

Riemann, sfera di Riemann, sfera di particolare superficie di Riemann definita aggiungendo un punto all’infinito al piano complesso (→ Riemann, superficie di). Il piano complesso esteso così ottenuto [...] NP interseca tale piano. Per rendere biunivoca la corrispondenza si associa al punto N un punto all’infinito del piano. La sfera di Riemann, che rappresenta un modello della retta proiettiva complessificata, costituisce la più semplice superficie ... Leggi Tutto
TAGS: TOPOLOGICAMENTE EQUIVALENTE – PROIEZIONE STEREOGRAFICA – CORRISPONDENZA BIUNIVOCA – SUPERFICIE DI RIEMANN – SFERA DI RIEMANN

Riemann-Hurwitz, formula di

Enciclopedia della Matematica (2013)

Riemann-Hurwitz, formula di Riemann-Hurwitz, formula di in geometria algebrica, formula proposta da B. Riemann, ma dimostrata da D. Hurwitz, che connette alcuni invarianti delle superfici algebriche [...] A1, ..., As ∈ X in cui la funzione ƒ si ramifica con indici di ramificazione, rispettivamente, k1, ..., ks; ed è la seguente: Se in particolare Y è la sfera di → Riemann, il cui genere è 0 e che può essere semplicemente ricoperta (cioè n ... Leggi Tutto
TAGS: SUPERFICI DI RIEMANN – GEOMETRIA ALGEBRICA – SFERA DI → RIEMANN – SURIETTIVA

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] a0/aα, ..., aα-1/aα, aα+1/aα, ..., an/aα) di Cn. Questo stabilisce una corrispondenza biunivoca tra Uα e Cn. Lo spazio proiettivo 1-dimensionale P1(C) è la cosiddetta sfera di Riemann e può essere ottenuto aggiungendo un ‛punto all'infinito' al piano ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] E1 = (f)0, E2 = (f)∞. Per ogni costante c, poniamo Dc = (f - c)0. Scegliamo un cammino 1-dimensionale γ che, sulla sfera di Riemann, congiunge 0 con ∞. Allora i divisori Dc, con c ∈ γ, formano una catena con bordo E1 - E2, sicché (f) è sempre omologo ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] funzioni distinte, in contrasto con le convinzioni di Riemann. Le frontiere naturali che impediscono a una funzione di variabile complessa definita su un disco di essere prolungata all'intera sfera di Riemann, sono composte da punti in ogni intorno ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] iniziava con il poligono che, come sosteneva, esisteva o sulla sfera di Riemann, o nel piano complesso, oppure nel disco unitario, a seconda del genere della superficie di Riemann che avrebbe dovuto formare. Là esso veniva spostato globalmente, come ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] curve razionali contenute in V. Si considerano quindi applicazioni analitiche f:S→V, dove è una copia della sfera di Riemann (superficie di Riemann di genere 0) o, equivalentemente, della retta proiettiva complessa. L'immagine C=f (S) è una curva ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] Ottanta, Poincaré e Klein avanzarono la congettura che ogni superficie di Riemann (che si può supporre di curvatura costante) è l'insieme quoziente del piano complesso, della sfera di Riemann o del disco non euclideo rispetto a un gruppo discreto ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] giunse a congetturare che ogni superficie di Riemann corrispondesse a un gruppo di questo tipo e viceversa. Ciò implicava che ogni superficie di Riemann si potesse ottenere da un poligono contenuto nella sfera di Riemann, o nel piano complesso o nel ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Riemann Bernhard

Dizionario delle Scienze Fisiche (1996)

Riemann Bernhard Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] .-Roch: v. fibrati: II 570 d. ◆ [ALG] Relazioni bilineari di R.: v. Riemann, superfici di: V 6 a. ◆ [ALG] Sfera di R.: sfera sulla quale si suole rappresentare, mediante proiezione stereografica, il piano di Argand-Gauss: v. fibrati: II 569 b. ◆ [ALG ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: METRICA RIEMANNIANA – VARIETÀ COMPLESSA – MATEMATICA – GOTTINGA – FIBRATI
Mostra altri risultati Nascondi altri risultati su Riemann Bernhard (5)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 11
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali