• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
lingua italiana
59 risultati
Tutti i risultati [145]
Matematica [59]
Fisica [23]
Temi generali [22]
Analisi matematica [17]
Informatica [15]
Fisica matematica [12]
Biologia [11]
Filosofia [12]
Storia della matematica [11]
Medicina [11]

Probabilita

Enciclopedia del Novecento (1980)

Probabilità Gian-Carlo Rota e Joseph P.S. Kung *La voce enciclopedica Probabilità è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un contributo di Marco Li Calzi. sommario: 1. Introduzione. [...] di [0, ∞) privi di punti di accumulazione, cioè di tutti i sottoinsiemi di [0, ∞) contenenti al più un numero finito di punti in ogni intervallo limitato (a, b). Gli eventi elementari sono indicati con (N(b) − N(a) = k) - giustificheremo tra ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: PRINCIPIO DI INDETERMINAZIONE DI HEISENBERG – MATRICE DELLE PROBABILITÀ DI TRANSIZIONE – EQUAZIONE ALLE DERIVATE PARZIALI – LEGGE DEBOLE DEI GRANDI NUMERI – TEORIA QUANTISTICA DEI CAMPI
Mostra altri risultati Nascondi altri risultati su Probabilita (12)
Mostra Tutti

Logica matematica

Enciclopedia del Novecento (1978)

Logica matematica Abraham Robinson *La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] ⋂a′=0. Un esempio tipico di algebra booleana è l'insieme di tutti i sottoinsiemi di un dato insieme V, dove i simboli ⋃ e ⋂ denotano, rispettivamente, possono essere ottenute, in vari modi, combinando un numero limitato di esse; per esempio ¬p e p⋀q ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: TEOREMA DI INCOMPLETEZZA DI GÖDEL – SCOMPOSIZIONE IN FATTORI PRIMI – TEOREMA DEL BUON ORDINAMENTO – FUNZIONE RICORSIVA PRIMITIVA – INSIEME DEI NUMERI NATURALI
Mostra altri risultati Nascondi altri risultati su Logica matematica (9)
Mostra Tutti

Scienza indiana: periodo classico. Matematica

Storia della Scienza (2001)

Scienza indiana: periodo classico. Matematica Takao Hayashi Matematica 'Gaṇita' ('matematica') Prima dell'introduzione e diffusione dell'astrologia oroscopica e dell'astronomia matematica nella società [...] della matematica moderna. Il più piccolo numero di ciascuno degli altri sottoinsiemi è dato, rispettivamente, da aa, bb con b=(aa)2, applicare meccanicamente una certa regola. Questo uso limitato del simbolo sembra confermare l'ipotesi qui avanzata ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La probabilità

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La probabilita Eugenio Regazzini La probabilità Evoluzione della nozione di probabilità La grande difficoltà in cui si dibattevano i cultori [...] per ogni classe χ di numeri aleatori limitati, esiste almeno una previsione; ciò prova che la precedente definizione non perde mai di significato (de Finetti 1949). Consideriamo ora una classe di eventi E (classe di sottoinsiemi di Ω) e l'insieme A(E ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] gruppo di un gruppo discreto; quindi non è certo opportuno limitarsi ad algebre commutative. Sia A un'algebra C*, e spazio è sostituita da quella di spettro dimensionale, cioè dal sottoinsieme {z∈ℂ, Re(z)≥0} delle singolarità delle funzioni ... Leggi Tutto
CATEGORIA: GEOMETRIA

L'Universo matematico

Frontiere della Vita (1998)

L'Universo matematico John D. Barrow (Astronomy Centre, University of Sussex, Brighton, Gran Bretagna) Parte di questo saggio è stata pubblicata sotto il titolo Perché il mondo è matematico? Roma-Bari, [...] più) quantità X e Y nella forma X + y2= l e se non ci limitiamo ai numeri interi, allora esistono un'infinità di coppie (X, Y) che risolvono l'equazione In pratica lo si chiede a un sottoinsieme rappresentativo della popolazione e ciò usualmente ... Leggi Tutto
CATEGORIA: COSMOLOGIA – TEMI GENERALI

Geometria non commutativa

Enciclopedia della Scienza e della Tecnica (2007)

Geometria non commutativa Alain Connes Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo allora la teoria generale della relatività dà chiaramente ragione a Carl [...] di un gruppo discreto; quindi non è certo opportuno limitarsi ad algebre commutative. Sia A un'algebra C*, e uno spazio è sostituita da quella di spettro dimensionale, cioè dal sottoinsieme, {z∈ℂ, Re(z)≥0} delle singolarità delle funzioni analitiche ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – APPROSSIMAZIONE SEMICLASSICA – ELETTRODINAMICA QUANTISTICA – GRUPPO DI RINORMALIZZAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] cui è sup {∥x∥: x ∈ B} 〈 + ∞. Siano E, F normati e T: E → F un operatore (lineare) che porta i sottoinsiemi limitati di E in sottoinsiemi limitati di F di modo che ∥T∥ - : = sup {∥Tx∥ : ∥x∥ ≤ 1} definirà una norma sullo spazio L (E, F) di tutti gli ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] numeri reali è dato da una proprietà che corrisponde a una proprietà φ(Y) di sottoinsiemi Y di ℕ. Ora, l'estremo superiore di S (quando è superiormente limitato) è nel modello di Dedekind semplicemente l'unione delle sezioni inferiori che sono membri ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] nella geometria di più variabili complesse. Si dice che un dominio limitato M è simmetrico se in ogni punto z di M c vari fasci. Un fascio S su M assegna, per definizione, a ciascun sottoinsieme aperto U di M un gruppo abeliano o, più in generale, un ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti
1 2 3 4 5 6
Vocabolario
finito
finito agg. [part. pass. di finire]. – 1. a. Giunto o condotto a termine, compiuto: arrivare a spettacolo f.; sono ormai due anni f. che ha lasciato il paese. Frequente nell’uso fam. la locuz. farla finita (con la indeterminato), smettere...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali