GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] n-dimensionale, si ha X = d [L] in H2n (PN, ℤ) per qualche intero d. Si può scegliere un sottospaziolineare M di dimensione N - n che interseca X trasversalmente. Ne segue che (X.M) = d e quindi d > 0. L'intero d è detto ‛grado' di X. Per esempio ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] di più elementi k1v1+ ... +krvr, nonché, di dipendenza e indipendenza lineare: v1, ..., vr sono indipendenti se k1v1+ ... +krvr=0 solo quando k1= ... =kr=0. Sottospazio V′ di V è l’insieme degli elementi di V ottenuto partendo da un sottoinsieme ...
Leggi Tutto
Geometria
Ryoichi Kobayashi e Luigi Ambrosio
Giovanni Bellettini
(XVI, p. 623; App. III, i, p. 724; IV, ii, p. 39; V, ii, p. 391)
Numerose voci dell'Enciclopedia Italiana trattano i vari oggetti e [...] coordinate cartesiane, e che la dipendenza sia data da una funzione lineare dipendente dal punto
[7] formula
dove Ti(x) e Tj risultati nelle approssimazioni diofantee, come il teorema del sottospazio di Schmidt, suggeriscono che l'origine del 2 ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] bivettori Pjl e Qjl formano una coppia di Poisson se il fascio lineare dei bivettori
formula [
4]
verifica l'identità di Jacobi per chiusura di ogni traiettoria di tale flusso è un sottospazio omogeneo di volume finito; la seconda che qualsiasi ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] conduce agli spazi di Banach. Si studiano i sottospazi, le parti equilibrate, le parti assorbenti. compatto, una misura (di Radon) μ in E è una qualunque forma lineare continua nello spazio C(E) delle funzioni numeriche continue definite in E; per ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] Lo spazio quoziente delle r-forme chiuse modulo il sottospazio delle r-forme esatte è il gruppo di coomologia r, s=1, ..., N. (21)
Dato che ∂er/∂xi è una combinazione lineare di e1, ..., eN, possiamo scrivere
dove ωrs è una 1-forma su M. ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] proiettive, e lo spazio proiettivo un sottospazio dello spazio euclideo. Klein attribuiva molta importanza 1913), secondo le quali una connessione stabilisce una relazione lineare tra spazi vettoriali (non necessariamente spazi tangenti) associati a ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] infinite, che corrispondono ai gruppi classici: la serie An del gruppo speciale lineare SL(n+1,ℂ)≡{X∈Mn+1,n+1(ℂ) tali che detX=1} proiettivo di dimensione n come equazione dell'ipersuperficie dei sottospazi di dimensione n−k−1 che incontrano W.
...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] avanzate. Egli aveva studiato sistemi di cubiche usando un sistema lineare canonico C3(λ) al quale apparteneva anche la cosiddetta curva . In tale iperspazio esteso, Klein considerò il sottospazio dei complessi lineari speciali, che si ottiene quando ...
Leggi Tutto
sottospazio
sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...