• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
7 risultati
Tutti i risultati [29]
Analisi matematica [7]
Matematica [14]
Fisica [7]
Geometria [3]
Statistica e calcolo delle probabilita [2]
Meccanica quantistica [2]
Meccanica [2]
Meccanica dei fluidi [2]
Metafisica [2]
Filosofia [2]

Wavelet

Enciclopedia Italiana - VII Appendice (2007)

Wavelet Silvia Bertoluzza Il concetto di wavelet (ondina) fu introdotto per la prima volta dal geofisico francese J. Morlet attorno al 1975. Insieme al fisico francese A. Grossmann, Morlet mise a punto, [...] in maniera univoca. Per costruire la base di w. si introduce un sottospazio di dettagli Wj⊂Vj+1 tale che ogni elemento f di Vj+1 1)ka1−k. Nel caso in cui le w. non siano ortogonali vale una relazione analoga nella quale i coefficienti di scala {ak, ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TRASFORMATA DI FOURIER – ANALISI DEI SEGNALI – SUPPORTO COMPATTO – METEOROLOGIA
Mostra altri risultati Nascondi altri risultati su Wavelet (3)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] , diremo anche che gli elementi x ∈ M, y ∈ N sono ortogonali. Un ‛sistema ortogonale' è un sottoinsieme Q, per il quale si ha che per x ; per tutti gli x in D(A), il cui dominio è il sottospazio D(A′) di tutti quei ϕ in E′, per cui l'applicazione ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] metodo algebrico consistente nell'utilizzare una trasformazione ortogonale delle variabili x1,x2,…,xn nelle uniforme limitatezza. Supponiamo che lo spazio X sia completo e sia S un sottospazio del duale coniugato X′. Se per ogni x in X esiste una ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] L'immagine F(λ) mediante (U−λI)k di E è allora un sottospazio chiuso di E, complementare di N(λ), e la restrizione di U−λI N(λ,U*) hanno la stessa dimensione ed F(λ,U) è il complemento ortogonale di N(λ-,U*); inoltre, se E(λ,U) è l'autospazio di U ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] M sono i punti pi, i=1,2,3,4, dove tale vettore è ortogonale al toro raffigurato nella fig. 2. Posto ci=f(pi), i=1,…,4, , il suo indice di Morse è, per definizione, la dimensione del sottospazio di ℝn dove la matrice D2fM(p) è definita negativa. Se ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

operatore di proiezione

Enciclopedia della Scienza e della Tecnica (2008)

operatore di proiezione Luca Tomassini Sia ℋ uno spazio vettoriale e P un’applicazione lineare (operatore) di ℋ in sé. Se P=P2 allora P è detto operatore di proiezione. Di particolare importanza è il [...] ora il sottoinsieme di ℋ definito da XP={x∈ℋ tali che Px=x} dove P è un proiettore ortogonale. Non è difficile verificare (P è lineare) che XP è un sottospazio lineare chiuso nella norma indotta dal prodotto scalare. Si ha inoltre (I−P)2=I−2P+P2=I ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: COMPLEMENTO ORTOGONALE – APPLICAZIONE LINEARE – OPERATORI HERMITIANI – SOTTOSPAZIO LINEARE – FUNZIONI MISURABILI
Mostra altri risultati Nascondi altri risultati su operatore di proiezione (5)
Mostra Tutti

base

Dizionario delle Scienze Fisiche (1996)

base base [Der. del lat. basis, dal gr. básis, "parte inferiore di una costruzione"] [ALG] Lato sul quale appoggia o s'immagina appoggiato un poligono, e, per un solido, il poligono o il cerchio su cui [...] i vettori di una b. sono a due a due ortogonali, allora questa b. si dice ortogonale, se, poi, i vettori sono anche normalizzati (di punti prefissati costituiscono un fascio e un sottospazio vettoriale unidimensionale, e i loro coefficienti sono ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su base (1)
Mostra Tutti
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali