Modelli descrittivi e analisi esplorativa dei dati. Modelli predittivi: regressione e classificazione. Disegno sperimentale. Applicazioni. Tra passato e futuro. Bibliografia
Come disciplina che si serve [...] E [1]
in cui A contiene le coordinate dei campioni nel sottospazio delle componenti, mentre B è la matrice di rotazione che permette la (o le) proprietà da predire e le misure sperimentali sia lineare:
Y=XB+E [2]
dove X e Y hanno il ...
Leggi Tutto
Wavelet
Silvia Bertoluzza
Il concetto di wavelet (ondina) fu introdotto per la prima volta dal geofisico francese J. Morlet attorno al 1975. Insieme al fisico francese A. Grossmann, Morlet mise a punto, [...] integrabile) si possano ottenere come loro combinazione lineare (cioè come serie di tali funzioni moltiplicate scala in maniera univoca. Per costruire la base di w. si introduce un sottospazio di dettagli Wj⊂Vj+1 tale che ogni elemento f di Vj+1 si ...
Leggi Tutto
Equazioni funzionali
JJacques Louis Lions
di Jacques Louis Lions
Equazioni funzionali
sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] caso delle equazioni di Navier-Stokes. Allora, se Vm indica un sottospazio di V di dimensione finita m, la (15) viene approssimata dall'equazione differenziale ordinaria non lineare
Si dimostra allora, mediante una serie di opportune valutazioni a ...
Leggi Tutto
Fisica
BBruno Ferretti
di Bruno Ferretti
Fisica
sommario: 1. Introduzione. a) Obiettività secondo Poincaré. b) Storia naturale e fisica. c) Il metodo sperimentale e il metodo teorico. d) Storicità [...] rappresenta la funzione d'onda, H è un operatore lineare hermitiano che, nella nuova meccanica quantica, rappresenta l'hamiltoniana fi gradi di libertà deve essere descritto, nel sottospazio delle fasi relativo, con una incertezza molto maggiore di ...
Leggi Tutto
Teorie unificate
MMirza A. B. Bég
di Mirza A. B. Bég
SOMMARIO: 1. Introduzione. □ 2. La sintesi elettrodebole: dinamica quantistica dei sapori: a) osservazioni preliminari; b) le interazioni deboli [...] scalari di Higgs, P è un operatore di proiezione sul sottospazio a N − M dimensioni sotteso dai bosoni di Goldstone e da un fattore supplementare di soppressione pari a me/W. La crescita lineare di fa con W è legata al fatto che nelle teorie di gauge ...
Leggi Tutto
Simmetrie e invarianze
LLuigi A. Radicati di Brozolo
di Luigi A. Radicati di Brozolo
SOMMARIO: 1. Introduzione e brevi cenni storici. □ 2. La struttura dello spazio-tempo assoluto. □ 3. Il ruolo della [...] su ℋ che associa a ogni g∈G l'operatore unitario Ug. Un sottospazio ℋα⊂ℋ (o Aα(ℋ)⊂A(ℋ)) si dice G-invariante se, per ogni g che G sia il gruppo abeliano U(1), il termine non lineare nella definizione della curvatura (8) si annulla e l'equazione ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] e soddisfa sempre la regola del prodotto di Leibniz A(x y) = A(x)y + xA(y). Infine, sia A un operatore lineare definito su un sottospazio compatto D(A) di uno spazio di Banach E. Nello spazio duale E′ di E (v. cap. 3, § c) sarà definito un ...
Leggi Tutto
Reti neurali
100.000.000.000 neuroni, 700.000.000.000.000 sinapsi per costruire un pensiero
Modelli interpretativi dei circuiti neuronali
diPaolo Del Giudice
13 luglio
Al Dartmouth College, nel New Hampshire, [...] esempi è in effetti un altro modo di descrivere un fit non lineare, in cui i punti sperimentali sono gli esempi della regola (corrispondenza) da quelle combinazioni, e generando da queste un sottospazio che, quando si proiettano su di esso i dati ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] conduce agli spazi di Banach. Si studiano i sottospazi, le parti equilibrate, le parti assorbenti. compatto, una misura (di Radon) μ in E è una qualunque forma lineare continua nello spazio C(E) delle funzioni numeriche continue definite in E; per ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] Lo spazio quoziente delle r-forme chiuse modulo il sottospazio delle r-forme esatte è il gruppo di coomologia r, s=1, ..., N. (21)
Dato che ∂er/∂xi è una combinazione lineare di e1, ..., eN, possiamo scrivere
dove ωrs è una 1-forma su M. ...
Leggi Tutto
sottospazio
sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...