• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
40 risultati
Tutti i risultati [383]
Geometria [40]
Matematica [113]
Fisica [85]
Fisica matematica [43]
Algebra [37]
Temi generali [35]
Analisi matematica [34]
Storia della matematica [27]
Astronomia [23]
Arti visive [24]

geometria

Enciclopedia on line

In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. Cenni storiciL’antichità - L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] altro lato a un radicale mutamento del concetto stesso di spazio come ambiente di una determinata g., tanto che moltissimi differenziale proiettiva: la tangente a una curva, il piano osculatore a una curva sghemba, il piano tangente a una superficie ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: OPERAZIONI DI PROIEZIONE E SEZIONE – TEORIA QUANTISTICA DEI CAMPI – TEORIA DELLE SUPERSTRINGHE – POSTULATO DELLE PARALLELE – METODO DELL’ASSONOMETRIA
Mostra altri risultati Nascondi altri risultati su geometria (13)
Mostra Tutti

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] M è definito da un sistema di funzioni (1), otteniamo una metrica riemanniana dove Da un punto di vista geometrico lo spazio tangente Tp(M) è considerato come un piano n-dimensionale in RN e la struttura euclidea di RN induce il prodotto interno ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] X, Y e Z si intersecano in un numero finito di punti semplici sia su Y che su Z e, in ciascuno di questi punti, gli spazi tangenti a Y e a Z si intersecano solo nell'origine. L'indice di intersezione topologico (Y.Z) eguaglia il numero dei punti di ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] del fibrato vettoriale, si ottiene un intero. In effetti, i due campi vettoriali commutabili che generano lo spazio tangente per un 2-toro ordinario (commutativo) corrispondono algebricamente a due derivazioni commutabili dell'algebra delle funzioni ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] massimale mP che consta delle funzioni regolari che si annullano in P. Lo spazio tangente in P è legato allo spazio quoziente mP/(mP)2, che nei punti non singolari è grosso modo lo spazio dei valori delle derivate prime. Se il punto P è non singolare ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] che una connessione permette di riconoscere in ogni punto dello spazio totale di un fibrato lo spazio tangente alla fibra e allo spazio base. Viceversa, questo spezzamento dello spazio tangente sullo spazio totale dà luogo a una connessione. L'altro ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

metrica riemanniana

Enciclopedia della Scienza e della Tecnica (2008)

metrica riemanniana Luca Tomassini Un tensore g di rango 2 definito su una varietà differenziabile n-dimensionale che sia covariante, ­simmetrico e definito positivo. In ogni spazio tangente TπMν nel [...] curva regolare c:[0,1]→Mν dove c∙ indica il vettore tangente alla curva c(t). La lunghezza di una curva regolare a estremi p,q. Con questa distanza la varietà Mν diviene uno spazio metrico. Due varietà riemanniane Mν1 e Mν2 si dicono isometriche ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: VARIETÀ DIFFERENZIABILE – GEOMETRIA DIFFERENZIALE – SPAZIO VETTORIALE – PRODOTTO SCALARE – CAMPO TENSORIALE
Mostra altri risultati Nascondi altri risultati su metrica riemanniana (1)
Mostra Tutti

curvatura scalare

Enciclopedia della Scienza e della Tecnica (2008)

curvatura scalare Luca Tomassini Sia Mν una varietà riemanniana regolare, ovvero una varietà C∞ sulla quale è specificato un campo tensoriale definito positivo g(x) (x indica qui un sistema di coordinate [...] il prodotto di Lie. La derivata covariante è strettamente connessa con la nozione di trasporto parallelo di un vettore in TMνπ, lo spazio tangente a Mν in p, e la quantità R(X,Y)Z (calcolata in uno specifico punto p) può essere considerata una misura ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: APPLICAZIONE MULTILINEARE – SIMBOLI DI CHRISTOFFEL – VARIETÀ RIEMANNIANA – DERIVATA COVARIANTE – TRASPORTO PARALLELO

varieta kahleriana

Enciclopedia della Scienza e della Tecnica (2008)

varietà kähleriana Gilberto Bini Una metrica riemanniana su una varietà complessa M è detta hermitiana se definisce un prodotto interno hermitiano su ciascuno spazio tangente. Una metrica hermitiana [...] Kähler associata: è una metrica di Kähler se, e soltanto se, la forma Φ è chiusa, cioè se dΦ=0. Sullo spazio proiettivo ℙn(ℂ) è definita una metrica di Kähler nota sotto il nome di metrica di Fubini-Study. Generalmente una sottovarietà complessa di ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – METRICA RIEMANNIANA – FORMA DIFFERENZIALE – VARIETÀ KÄHLERIANA – VARIETÀ COMPLESSA

varieta simplettiche

Enciclopedia della Scienza e della Tecnica (2008)

varietà simplettiche Luca Tomassini Una varietà differenziabile di dimensione pari M2n dotata di una struttura simplettica (o struttura hamiltoniana), ossia di una forma bilineare (o 2-forma) antisimmetrica [...] sia non degenere e chiusa. Più esplicitamente, per ogni x∈M2n si assume l’esistenza di una forma bilineare Φx:Tx(M2n)×Tx(M2n)→ℝ sullo spazio tangente Tx(M2n) a M2n nel punto x tale che Φx(Xx,Yx)=−Φx(Yx,Xx) per Xx,Yx∈Tx(M2n) (antisimmetria) e Φx(Xx,Yx ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – MECCANICA HAMILTONIANA – SPAZIO DELLE FASI – PRODOTTO SCALARE – CAMPI VETTORIALI
1 2 3 4
Vocabolario
derivata
derivata s. f. [da derivato, part. pass. di derivare1]. – Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato...
tangenziale
tangenziale agg. [der. di tangenza]. – Genericam., che è tangente, o che ha comunque relazione con una retta tangente, con un piano o con un altro ente geometrico tangente. In partic.: 1. In geometria piana, coordinate t. (o coordinate di...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali