Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] topologia.
Una metrica riemanniana su M definisce un prodotto interno su ciascuno spazio +er•des per r, s=1, ..., N. (21)
Dato che ∂er/∂xi è una combinazione lineare di e1, ..., eN, possiamo scrivere
dove ωrs è una 1-forma su M. Sostituendo la (22) ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] che può essere spostato e rigirato nello spazio in molte forme diverse ma topologicamente equivalenti. Ad esempio, il lettore un elemento di V può essere considerato come una applicazione lineare dai numeri complessi in V: data l'applicazione 〈a∣ : ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] il grado del polinomio P(x,y). Una retta è l'insieme degli zeri di una equazione lineare (curva di grado 1)
[2] ax+by+c=0.
Una conica è l'insieme analitica complessa di dimensione s è uno spaziotopologico di Hausdorff che può essere ricoperto da ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] spazio di funzioni aventi determinate singolarità (su una curva, i poli). Il luogo dei punti singolari è generalmente una sottovarietà o una sottovarietà algebrica di codimensione 1, e come tale definisce un fascio lineare gli spazitopologici, o ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] quali una connessione stabilisce una relazione lineare tra spazi vettoriali (non necessariamente spazi tangenti) associati a una varietà mondiale il primo a sistemare la materia fu il topologo americano Steenrod nel libro The topology of fibre bundles ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] q−1 sono linearmente indipendenti se nessuna loro combinazione lineare appartiene a un'omologia. Egli denota con Pq−1 stato sviluppato per riflettere le operazioni che sono possibili con gli spazitopologici. Per esempio, date due varietà M e N, si ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti
Roger Cooke
Brian Griffith
La topologia degli insiemi di punti
La topologia generale o topologia degli insiemi [...] spazio metrico astratto, fondamentale per l'analisi funzionale e la topologia. Uno spazio metrico è uno spazio in La funzione F(x) resta continua, e per il risultato di Schwarz deve essere lineare in un intervallo (x0-δ, x0) a sinistra e in uno (x0, ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] topologia algebrica e della geometria differenziale moderna.
Un secondo importante indirizzo di ricerca riguarda gli studi sugli spazi Egli aveva studiato sistemi di cubiche usando un sistema lineare canonico C3(λ) al quale apparteneva anche la ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
simplesso
simplèsso s. m. [adattam. dell’ingl. simplex, sost. sviluppatosi dall’agg. simplex «semplice», che è dal lat. simplex -plĭcis come l’ital. semplice]. – In matematica, generalizzazione dei concetti di segmento, triangolo, tetraedro:...