normalizzabile
normalizzàbile ["che può essere normalizzato", der. di normalizzare "sottoporre a norme, rendere normale, riportare a condizioni normali"] [ANM] Funzione n.: funzione appartenente a un [...] certo spazionormato e avente norma finita. ...
Leggi Tutto
In matematica, si chiamano metodi, o procedimenti di a. o, semplicemente, a., procedure alle quali si ricorre per rappresentare enti matematici (numeri, misure, funzioni ecc.) in modo non esatto, ma sufficientemente [...] da x, esista. Risultati particolarmente importanti, anche per le applicazioni, si ottengono quando E è uno spazio vettoriale normato (➔ spazio): in tal caso si parla del problema della migliore a. lineare.
Formule approssimate
Funzioni reali e ...
Leggi Tutto
spazio di Hilbert
Arrigo Cellina
Per poter enunciare il teorema di Pitagora nel piano, occorre definire quando due vettori sono tra loro ortogonali; ciò si ottiene dalla nozione di prodotto scalare [...] in entrambe le variabili; (b) è simmetrica, cioè 〈a,b〉=〈b,a〉; (c) 〈a,a〉≥0 e 〈a,a〉=0 se e solo se a=0. Lo spazio si intende normato dalla norma ∥a∥=√〈a, a〉. Per es., lo spazio L2(Ω) delle classi di equivalenza delle funzioni a quadrato sommabile è uno ...
Leggi Tutto
Misura e integrazione
M. Evans Munroe
Introduzione
La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] questa è una pseudonorma, in quanto ∥f∥=0 implica soltanto che f=0 q. o.
Teorema di Riesz-Fischer: lo spazio lineare normato Lp è completo.
Questo è proprio il teorema che invano i matematici del XIX secolo si affannarono a ricercare. La ragione per ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] se nel periodo iniziale che qui consideriamo erano adottati solo in parte.
Un operatore lineare definito su uno spazio lineare normato X, a valori in uno spazio lineare normato Y, è una funzione A di un punto variabile x, che assume valori A(x) in Y ...
Leggi Tutto
operatori compatti
Luca Tomassini
Operatori lineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] . Notiamo che tali definizioni hanno senso anche nel caso di operatori su uno spazio di Banach (normato e completo) E. Ogni operatore compatto hermitiano su uno spazio di Hilbert ℋ è diagonalizzabile, nel senso che esistono dei numeri complessi λifi0 ...
Leggi Tutto
Krein Mark Grigorjevich
Krein 〈kràin〉 Mark Grigorjevich [STF] (n. 1907) ◆ [ANM] Teorema di K.-Milman: se K è un insieme convesso compatto contenuto in uno spazio vettoriale normato con x∈k punto estremale, [...] se x=(1-t)x₀+tx₁ con t∈(0,1) e x₀, x₁∈K implica x₀=x₁=x, allora K coincide con l'inviluppo convesso chiuso dei suoi punti estremali ...
Leggi Tutto
normato
agg. [part. pass. di normare]. – Di ente conforme a una norma, a una regola. In matematica, spazio n., spazio vettoriale provvisto di una norma (v. norma, n. 6).
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...