• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
22 risultati
Tutti i risultati [37]
Matematica [22]
Geometria [11]
Algebra [9]
Analisi matematica [6]
Fisica [3]
Meccanica [3]
Fisica matematica [3]
Meccanica dei fluidi [3]
Statistica e calcolo delle probabilita [3]
Meccanica quantistica [3]

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] si annullano su C. L'anello delle coordinate affini A(C) della curva è il quoziente dell'anello k[x,y] per l'ideale I(C). Se due funzioni di A(C di oggetti (per es., la classe di tutti gli spazi topologici, o quella di tutti gli anelli) assieme a una ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] che si può supporre di curvatura costante) è l'insieme quoziente del piano complesso, della sfera di Riemann o del spazio euclideo di dimensione maggiore. Una definizione più rigorosa si ottiene considerando una varietà come uno spazio topologico ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] . Supponiamo ora che l'insieme X sia esso stesso uno spazio topologico; possiamo allora definire in ℬ(X) il sottospazio ℬ∞(X) di 0, ed è possibile scrivere (U−ζI)−1 come un quoziente di due tali determinanti infiniti. Si è così ricondotti alla ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] geometrico sono i generatori di un modulo libero, e il quoziente rispetto al nucleo dato dal modulo costituito dai bordi è sviluppato per riflettere le operazioni che sono possibili con gli spazi topologici. Per esempio, date due varietà M e N, si ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Algebra Claudio Procesi Algebra Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] una funzione continua f da Di a X. A ogni spazio topologico X possiamo associare un complesso algebrico: il complesso delle un'algebra di cui sia noto un ideale e il relativo quoziente (stesso problema per i gruppi); vedremo un'esempio nel caso ... Leggi Tutto
CATEGORIA: ALGEBRA

limite

Dizionario delle Scienze Fisiche (1996)

limite lìmite [Der del lat. limes -mitis] [LSF] Confine, termine, elemento di separazione; si specializza, in senso astratto, come il confine ideale al di sopra o al di sotto del quale si verifica un [...] l. nella topologia, sia quando si consideri una corrispondenza (o funzione) tra due spazi topologici, sia quando di un prodotto nel prodotto dei l., del l. di un quoziente nel quoziente dei l., in quest'ultimo caso con la condizione che la funzione ... Leggi Tutto
CATEGORIA: BIOFISICA – FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su limite (4)
Mostra Tutti

Modelli, Teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Modelli, Teoria dei Silvio Bozzi Malgrado le modeste origini che ne hanno segnato la nascita, la teoria dei modelli ha sviluppato nel corso del tempo idee e metodi che l'hanno resa uno dei settori più [...] dei clopen (insiemi simultaneamente aperti e chiusi) dello spazio topologico EC+ i cui chiusi sono le classi elementari un'estensione finita dei razionali, allora rimarrà tale in ogni quoziente M/J, per tutti salvo un numero finito di ideali ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: TEOREMA DI COMPATTEZZA – GRUPPO DI AUTOMORFISMI – TEORIA DELLA STABILITÀ – CLASSI D'EQUIVALENZA – GEOMETRIA ALGEBRICA
Mostra altri risultati Nascondi altri risultati su Modelli, Teoria dei (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi Gabriele Lolli La teoria degli insiemi La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] di Suslin, che, dal 1920, chiedeva se ogni spazio topologico connesso e con la condizione della catena numerabile fosse isomorfo vero modello a due valori si ottiene con un opportuno quoziente, rispetto a un ultrafiltro generico. Con la tecnica del ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

applicazióne

Dizionario delle Scienze Fisiche (1996)

applicazione applicazióne [Der. del lat. applicatio -onis "atto ed effetto dell'applicare", dal part. pass. applicatus di applicare: (→ applicabile)] [ALG] Si dice che f è un'a. di un insieme P in un [...] : I 96 a. ◆ [ALG] A. continua: a. di uno spazio topologico A in un altro A' che fa corrispondere a punti "vicini" di A A. momento: v. moto, costanti del: IV 124 f. ◆ [ALG] A. quoziente: v. invarianti, teoria degli: III 284 e. ◆ [ALG] A. r-equivalente: ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA – MECCANICA APPLICATA

integrale

Enciclopedia on line

In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per [...] varie direzioni, soprattutto sostituendo allo spazio ambiente euclideo uno spazio metrico o topologico. I. di Stieltjes. - polinomio). Anche l’i. di una funzione razionale fratta (quoziente di polinomi) si può esprimere mediante un numero finito di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI DI DUE O PIÙ VARIABILI – FUNZIONE DI VARIABILE COMPLESSA – INTEGRAZIONE PER SOSTITUZIONE – FUNZIONE DI VARIABILE REALE – INTERVALLO DI INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su integrale (3)
Mostra Tutti
1 2 3
Vocabolario
quoziènte
quoziente quoziènte s. m. [dal lat. quotiens avv. «quante volte», der. di quot «quanti»]. – 1. In aritmetica, il risultato dell’operazione della divisione, e cioè il numero che esprime quante volte il divisore è contenuto nel dividendo: q....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali