• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
103 risultati
Tutti i risultati [103]
Matematica [27]
Fisica [20]
Geometria [13]
Fisica matematica [9]
Storia della matematica [10]
Astronomia [6]
Storia della fisica [7]
Algebra [6]
Temi generali [4]
Filosofia [4]

L'Età dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele Peter Schreiber Geometria analitica, delle curve e delle superfici. Il problema delle parallele A [...] fin dall'inizio, di estendere tutti i concetti geometrici bi- e tridimensionali al caso di una dimensione qualunque e dal caso euclideo a quello di spazi a metrica non euclidea portò all'enorme estensione del dominio della geometria, al punto da far ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] Poul Heegaard (1871-1948) propose una costruzione di varietà tridimensionali ('gli spezzamenti di Heegaard') assieme a un'analisi dei K e L due complessi geometrici di celle di uno spazio euclideo e f :K→L un'applicazione continua che porta vertici ... Leggi Tutto
CATEGORIA: GEOMETRIA

La Rivoluzione scientifica: i domini della conoscenza. Lo sviluppo della matematica di Apollonio: Desargues, Pascal…

Storia della Scienza (2002)

La Rivoluzione scientifica: i domini della conoscenza. Lo sviluppo della matematica di Apollonio: Desargues, Pascal¿ Paolo Freguglia Lo sviluppo della matematica di Apollonio: Desargues, Pascal e le [...] tale che apparisse al nostro occhio come se fosse tridimensionale. Il collegamento con la tradizione classica riguarda la livello concettuale, rendendo possibile un ampliamento dello spazio euclideo. Anche in questi sviluppi la teoria delle ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Frattali

Enciclopedia della Scienza e della Tecnica (2007)

Frattali Luciano Pietronero La geometria frattale permette di caratterizzare le strutture che godono della proprietà di invarianza di scala. Il termine frattale (dal latino fractus, rotto o frammentato) [...] di grandezza L: per il caso euclideo l'analogia è il rivestimento di un un insieme è sempre minore di quella dello spazio in cui è definito, abbiamo il sorprendente risultato piano di una porzione di volume tridimensionale. Come si può osservare, la ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GRUPPO DI RINORMALIZZAZIONE – EQUAZIONI DI NAVIER-STOKES – EQUILIBRIO TERMODINAMICO – EQUAZIONI DIFFERENZIALI – INSIEME DI MANDELBROT

Sviluppi delle matematiche

Storia della civiltà europea a cura di Umberto Eco (2014)

Andrea Bernardoni Il contributo è tratto da Storia della civiltà europea a cura di Umberto Eco, edizione in 75 ebook Il grande successo incontrato nel Settecento dai metodi analitici fa compiere all’’algebra [...] uso delle coordinate, sia nel piano che nello spazio, la base di uno studio sistematico delle curve dell’oggetto spaziale (tridimensionale). Monge illustra questi serie armonica implica il teorema euclideo sulla serie infinita dei numeri ... Leggi Tutto

Geometrie non euclidee

Storia della civiltà europea a cura di Umberto Eco (2014)

Giorgio Strano Il contributo è tratto da Storia della civiltà europea a cura di Umberto Eco, edizione in 75 ebook Nel corso dell’Ottocento vengono create nuove geometrie, in cui non vale il postulato [...] di un postulato che si rivela equivalente a quello euclideo. I precursori Il tentativo più coerente di dimostrare il di curvatura per le varietà. “Che lo spazio sia una varietà tridimensionale illimitata” è un’ipotesi confortata dall’esperienza, ... Leggi Tutto

dominio

Enciclopedia della Matematica (2013)

dominio dominio termine utilizzato in matematica con diversi significati; in generale, si riferisce comunque a un ambiente in cui si opera. ☐ In algebra e analisi, il dominio di una funzione ƒ: X → Y [...] in esso contenuti. La nozione di dominio regolare si estende in modo immediato al caso di insiemi dello spazio euclideo tridimensionale. ☐ In informatica, il dominio è l’espressione alfanumerica che identifica in maniera univoca un server Internet. A ... Leggi Tutto
TAGS: DOMINI A FATTORIZZAZIONE UNICA – DOMINI DI PRIMO LIVELLO – INSIEME DI DEFINIZIONE – CALCOLO DIFFERENZIALE – DOMINI DI → DEDEKIND
Mostra altri risultati Nascondi altri risultati su dominio (8)
Mostra Tutti

piano

Enciclopedia della Matematica (2013)

piano piano concetto primitivo della geometria la cui natura è di volta in volta precisata mediante l’introduzione di opportuni sistemi di assiomi che collegano questa nozione alle altre nozioni fondamentali [...] campo K; → piano proiettivo; → spazio proiettivo di dimensione 2). Nella geometria euclidea è implicitamente definito attraverso gli assiomi (→ geometria euclidea; → definizione). Nell’ordinario spazio euclideo tridimensionale un piano è individuato ... Leggi Tutto
TAGS: LINEARMENTE INDIPENDENTI – GEOMETRIA DIFFERENZIALE – SISTEMA DI RIFERIMENTO – COMBINAZIONE LINEARE – STRUTTURA ALGEBRICA
Mostra altri risultati Nascondi altri risultati su piano (2)
Mostra Tutti

convessita

Enciclopedia della Matematica (2013)

convessita convessità proprietà di una figura, di un insieme, di una funzione. ☐ In geometria, proprietà di una figura piana o solida consistente nel fatto che qualunque segmento avente per estremi due [...] convessi è un insieme convesso; l’unione di due insiemi convessi in genere non è un insieme convesso. Nello spazio euclideo tridimensionale sono esempi di insiemi convessi il cubo, la sfera, un semispazio. ☐ Più in generale, un sottoinsieme A di uno ... Leggi Tutto
TAGS: SPAZIO VETTORIALE TOPOLOGICO – SOTTOINSIEME APERTO – LOCALMENTE CONVESSO – FUNZIONALE LINEARE – SPAZIO VETTORIALE
Mostra altri risultati Nascondi altri risultati su convessita (1)
Mostra Tutti

dimensione

Enciclopedia della Matematica (2013)

dimensione dimensione termine usato in matematica con significati diversi. In geometria elementare, con il termine si indica ciascuna delle misure che descrivono l’estensione di una figura: lunghezza, [...] di dimensioni. Per estensione, si dice che lo spazio ordinario è tridimensionale, il piano bidimensionale, la retta unidimensionale, il suo punto possiede un intorno aperto omeomorfo a uno spazio euclideo di dimensione n. Il prefisso iper- è spesso ... Leggi Tutto
TAGS: DIMENSIONE DI UNO SPAZIO VETTORIALE – LINEARMENTE INDIPENDENTI – DIMENSIONE FRATTALE – VARIETÀ TOPOLOGICA – SPAZIO VETTORIALE
Mostra altri risultati Nascondi altri risultati su dimensione (2)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 11
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
rètta³
retta3 rètta3 s. f. [femm. sostantivato di retto2]. – In geometria, ente fondamentale, in genere assunto come primitivo nelle trattazioni assiomatiche, per il quale valgono alcune proprietà tipiche: per due punti distinti A e B (nel piano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali