• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
122 risultati
Tutti i risultati [483]
Matematica [122]
Fisica [274]
Temi generali [83]
Fisica matematica [78]
Chimica [65]
Storia della fisica [66]
Meccanica quantistica [63]
Biografie [54]
Fisica nucleare [52]
Algebra [47]

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] un ruolo sempre più importante le C*-algebre. Vi sono diverse linee di sviluppo, fra le quali esistono molteplici relazioni (v. Connes, 1990): l'approccio algebrico in teoria quantistica dei campi (iniziato da D. Kastler, N. Hugenholtz e R. Haag); la ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La grande scienza. Combinatoria

Storia della Scienza (2003)

La grande scienza. Combinatoria Peter J. Cameron Combinatoria Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] di nuovo in relazione alla teoria dei nodi. Un altro principio unificante che supera le frontiere tra i diversi campi è la 'teoria di 'quantistica' di ogni computazione quantistica può essere sostituita da un singolo calcolo del polinomio di Jones di ... Leggi Tutto
CATEGORIA: ALGEBRA

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] Dirichlet e alle funzioni zeta ζK(s) dei campi di numeri algebrici. L'ipotesi di Riemann e le sue generalizzazioni non hanno soltanto un interesse nella teoria delle funzioni. Dall'ipotesi di Riemann segue per esempio la stima del resto nella legge ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] tutte queste costruzioni potessero essere comprese in termini di teoria quantistica dei campi, dando con ciò origine al nuovo settore di studio della topologia quantistica e della teoria topologica dei campi quantizzati. 2. Come fissare un nodo: le ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

Stocastica

Enciclopedia del Novecento (1984)

MMark Kac di Mark Kac SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] modelli. La psicologia è un altro campo nel quale i processi di Markov svolgono un ruolo importante (v., per es., M. Frank Norman, Markov processes and learning models, New York 1972). Possiamo anche ricordare la teoria dell'informazione; in verità è ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – COEFFICIENTE DI CORRELAZIONE – GENETICA DELLE POPOLAZIONI – OSSERVAZIONE SPERIMENTALE – EQUAZIONE DI SCHRÖDINGER
Mostra altri risultati Nascondi altri risultati su Stocastica (2)
Mostra Tutti

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] moderna meccanica quantistica che gli conferisce, al di là del di Hertz, alla quale si riconnette la teoria di Poincaré, non sarebbe stata possibile senza la tradizione analitica della meccanica. La possibilità di sviluppare in un certo campo teorie ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] teoria conforme dei campi e della teoria delle stringhe, si è scoperto che le funzioni di partizione di numerosi modelli matematici di teoria dei campi zeta di Riemann. Come si è detto, una delle idee fondamentali della coomologia quantistica è che ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] di distribuzioni. Tale punto di vista, e l'introduzione della trasformata di Fourier nel campo di Fredholm, Hilbert e Riesz sulle equazioni integrali, ma la nuova formulazione dei principî fondamentali della meccanica quantistica in termini di teoria ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La grande scienza. Automi e linguaggi formali

Storia della Scienza (2003)

La grande scienza. Automi e linguaggi formali Dominique Perrin Automi e linguaggi formali La teoria degli automi e dei linguaggi formali ha lo scopo di descrivere le proprietà delle successioni di simboli. [...] un sistema fisico quantistico. Gli inizi della teoria risalgono agli anni Novanta, in particolare a David Deutsch (1985). L'idea è di far uso di uno spazio degli stati rappresentato da uno spazio vettoriale di dimensione finita sul campo dei numeri ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – CIBERNETICA E INTELLIGENZA ARTIFICIALE

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] i risultati ottenuti fossero completati, si aprì un nuovo campo di ricerca. Allo stesso tempo si dimostrava che i gruppi che teoria completa delle rappresentazioni dei gruppi di Lie semisemplici. Con l'avvento della nuova meccanica quantistica ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 13
Vocabolario
quantìstico
quantistico quantìstico agg. [der. di quanto2] (pl. m. -ci). – 1. In fisica, che concerne i quanti, la teoria dei quanti (sinon., in alcuni usi, di quantico): teoria q.; effetti q.; meccanica q., formulazione della meccanica (v.) riferita...
scattering
scattering 〈skä′tëriṅ〉 s. ingl. [der. di (to) scatter «spargere; sparpagliare»], usato in ital. al masch. – Termine di largo uso nel linguaggio scient. come equivalente dell’ital. diffusione. In partic., in fisica delle particelle elementari,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali