La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] più avanti, questo obiettivo è stato raggiunto in modo più o meno completo per la teoria della misura, la topologia, la geometria differenziale e la geometria riemanniana.
Il principio fondamentale che permette di stabilire la dualità generale è il ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] è la classe delle ‛W*-algebre' (dette anche ‛algebre di von Neumann'), che sono algebre di operatori in L (H) chiuse nella topologia w*. In base alla teoria della dualità, ogni W*-algebra è uno spazio duale W di uno spazio di Banach W* che secondo S ...
Leggi Tutto
locale
locale [agg. Der. del lat. localis, da locus "luogo"] [LSF] (a) Che è proprio di un determinato luogo, inteso come parte di un tutto più esteso, in contrapp. a generale, globale (proprietà l., [...] il moto del fluido in esame. ◆ [ALG] Coordinate l. su una varietà: nella topologia, le corrispondenze biunivoche tra gli elementi di un aperto di una varietà topologica e quelli di un aperto di uno spazio reale a n dimensioni. ◆ [ANM] Derivata ...
Leggi Tutto
L'evoluzione temporale dei sistemi - in particolare di quelli deterministici, cioè tali che la conoscenza del sistema a un dato istante ne determina tutta l'evoluzione futura - è stata negli ultimi decenni [...] positività o dipendenza di una o più grandezze da altre) fanno sì che lo spazio delle fasi abbia anche una topologia e una geometria caratteristiche. Queste spesso pongono a loro volta delle limitazioni sui tipi di evoluzione temporale possibili, che ...
Leggi Tutto
Grassmann Herrmann Gunther
Grassmann 〈gràsman〉 Herrmann Günther [STF] (Stettino 1809 - ivi 1877) Prof. di matematica in scuole medie di Stettino (1836). ◆ [ALG] Algebra di G.: dato uno spazio vettoriale [...] in quanto assimilabili a funzioni di G.: v. colorimetria ottica. I 646 e. ◆ [ANM] Variabile di G.: lo stesso che variabile anticommutante. ◆ [ALG] Varietà di G.: v. fibrati: II 569 a. ◆ [ALG] Varietà complessa di G.: v. topologia algebrica: VI 261 c. ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] di dissimulare il proprio lavoro definendolo una semplice soluzione di rompicapo. La prima escursione che Euler fece nella topologia fu la soluzione del problema se fosse possibile un cammino che attraversasse i ponti di Königsberg una volta sola ...
Leggi Tutto
simplesso
simplèsso [Der. dell'ingl. simplex, che è dal lat. simplex -icis "semplice"] [ALG] Nella geometria, generalizzazione dei concetti di segmento, triangolo, tetraedro; precis., dati in uno spazio [...] (v. sopra). ◆ [ALG] S. orientato: s. euclideo i cui vertici vanno considerati in un determinato ordine. ◆ [ALG] S. topologico: qualunque insieme omeomorfo a un s. euclideo. ◆ [ANM] Criterio, o metodo, del s.: uno dei metodi usati nella programmazione ...
Leggi Tutto
Matematico (Torino 1903 - Roma 1977); prof. di geometria analitica e descrittiva a Bologna dal 1931 (con un intervallo dal 1939 al 1946 dovuto alle leggi razziali e trascorso in univ. inglesi); dal 1950 [...] geometriche dell'algebra moderna e della teoria dei corpi finiti. Si è anche occupato di questioni collegate di topologia, teoria delle funzioni di più variabili complesse, geometria differenziale in grande, raccolte in Forme differenziali e loro ...
Leggi Tutto
Introduzione. - La teoria delle c. è di recente costruzione, ma, per la sua stessa natura, è oggi già penetrata diffusamente nella matematica. Essa rappresenta, nel pensiero matematico, un momento di sintesi, [...] teoria delle c., la quale si rivela anche assai efficace per descrivere e generalizzare omologia e coomologia di uno spazio topologico (S. Eilenberg-N. E. Steenrod, 1952). Ma sono uno studio assiomatico delle c. abeliane di D. A. Buchsbaum (1955), e ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'intuizionismo di Brouwer
Anne L. Troelstra
L'intuizionismo di Brouwer
Nella dissertazione Over de Grondslagen der Wiskunde (I fondamenti della [...] il 1967 sei degli studenti di dottorato di Heyting scrissero, da un punto di vista intuizionista, tesi su argomenti quali la topologia, la teoria della misura, la teoria degli spazi di Hilbert, l'integrale di Radon e la geometria affine. Dopo il 1974 ...
Leggi Tutto
topologia
topologìa s. f. [comp. di topo- e -logia]. – 1. In geografia, lo studio del paesaggio e delle sue caratteristiche per individuare e definire i varî tipi di forme del suolo (l’insieme dei segni che si usano per rappresentare tali...
topologico
topològico agg. [der. di topologia] (pl. m. -ci). – Relativo alla topologia, nei suoi varî sign. In partic.: 1. In geografia, codice t., l’insieme dei segni di cui si serve la topologia per rappresentare i varî tipi di forme del...