• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
65 risultati
Tutti i risultati [73]
Matematica [65]
Fisica [46]
Algebra [46]
Fisica matematica [45]
Analisi matematica [29]
Meccanica [23]
Relativita e gravitazione [23]
Temi generali [21]
Storia della fisica [21]
Statistica e calcolo delle probabilita [21]

varietà

Enciclopedia on line

Agraria Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine [...] denso, cioè vicino, nella topologia di Zariski, a ogni altro punto della varietà e non è chiuso, cioè non è ideale massimale, quindi lo schema su V×V′ una struttura dello stesso tipo. V. riemanniana Si tratta di una v. differenziabile di classe Ci, ... Leggi Tutto
CATEGORIA: FORME E GENERI – SISTEMATICA E FITONIMI – ANALISI MATEMATICA – SISTEMATICA E ZOONIMI – AGRONOMIA E TECNICHE AGRARIE
TAGS: CAMPO ALGEBRICAMENTE CHIUSO – FUNZIONE DIFFERENZIABILE – RELAZIONE DI EQUIVALENZA – EQUAZIONI DIFFERENZIALI – COORDINATE PROIETTIVE
Mostra altri risultati Nascondi altri risultati su varietà (6)
Mostra Tutti

geometria

Enciclopedia on line

In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. Cenni storiciL’antichità - L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] ‘curvature’, che sono tutte nulle nel caso di uno spazio euclideo, mentre in generale danno una misura di quanto la varietà riemanniana e la relativa g. si discostino dall’ordinario spazio euclideo e relativa g. (➔ anche tensore). G. e fisica Tra i ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: OPERAZIONI DI PROIEZIONE E SEZIONE – TEORIA QUANTISTICA DEI CAMPI – TEORIA DELLE SUPERSTRINGHE – POSTULATO DELLE PARALLELE – METODO DELL’ASSONOMETRIA
Mostra altri risultati Nascondi altri risultati su geometria (13)
Mostra Tutti

tensore

Enciclopedia on line

Anatomia Muscolo volontario o involontario che ha la funzione di tendere un organo o una formazione anatomica: t. del palato, contrae il palato molle; t. del tarso, nell’orbita, comprime i punti lacrimali [...] ordine 2k, con k intero. Operazioni di natura differenziale sui tensori Dati due t. in un punto P di una varietà riemanniana MN, è possibile stabilire se essi sono uguali, e si può sommarli o farne la differenza, perché queste operazioni sono lecite ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: CAMBIAMENTO DI COORDINATE – CORRISPONDENZA BIUNIVOCA – VARIETÀ DIFFERENZIABILE – TEORIA DELLA RELATIVITÀ – EQUAZIONI DIFFERENZIALI
Mostra altri risultati Nascondi altri risultati su tensore (4)
Mostra Tutti

Lèvi-Cìvita, Tullio

Enciclopedia on line

Lèvi-Cìvita, Tullio Matematico italiano (Padova 1873 - Roma 1941). La sua opera ha avuto rilevanza fondamentale in svariati campi della matematica pura e applicata. A lui e al suo maestro G. Ricci Curbastro si deve l'elaborazione [...] (1917) un algoritmo formale in una nitida teoria geometrica sulla base del cosiddetto trasporto per parallelismo sulle varietà riemanniane a quante si vogliono dimensioni (parallelismo di L.-C.). Alla teoria della relatività è inoltre dedicata un ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLA RELATIVITÀ – MECCANICA RELATIVISTICA – PROBLEMA DEI TRE CORPI – PROBLEMA DEGLI N CORPI
Mostra altri risultati Nascondi altri risultati su Lèvi-Cìvita, Tullio (6)
Mostra Tutti

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] di esse ci occuperemo nei prossimi due capitoli. 3. Geometria riemanniana Una varietà con metrica riemanniana (15) si chiama una varietà riemanniana. L'esempio migliore di varietà riemanniana è una varietà M in uno spazio euclideo RN. Se M è definito ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] una geodetica minimale (teorema di Hopf-Rinow, 1931). Questo risultato ha un'estensione naturale al caso di varietà riemanniane di dimensione arbitraria, che costituiscono l'analogo a più dimensioni della nozione di superficie. Altri risultati molto ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

La grande scienza. Cronologia scientifica: 1961-1970

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1961-1970 1961-1970 1961 Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] lega il numero e il tipo di punti critici, con particolare riferimento alle applicazioni nello studio delle geodetiche su varietà riemanniane. Il libro, per la sua particolare chiarezza, viene usato ancora oggi per un primo approccio a queste teorie ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – STORIA DELLA BIOLOGIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] dell'argomento della perturbazione fu trovata nel 1956 da Nash, nella dimostrazione dell'esistenza di immersioni isometriche C∞ di varietà riemanniane in spazi euclidei. Nash considera un'applicazione F dello spazio X=C∞(M) in un altro spazio Y=C ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] . La nozione di integrale di Dirichlet può essere estesa al caso in cui u sia una funzione definita su una varietà riemanniana e prenda i suoi valori in un'altra varietà riemanniana. In tal caso i punti stazionari sono le 'mappe armoniche' tra le due ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

campo

Dizionario delle Scienze Fisiche (1996)

campo campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] . dielettrico: II 120 e e solidi, proprietà magnetiche dei: V 372 a. ◆ [ALG] C. locale di normali a una sottovarietà: v. varietà riemanniane: VI 508 f. ◆ [EMG] C. lontano: (a) lo stesso che c. di radiazione (v. sopra); (b) la regione spaziale posta a ... Leggi Tutto
CATEGORIA: ACUSTICA – BIOFISICA – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su campo (2)
Mostra Tutti
1 2 3 4 5 6 7
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali