• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
164 risultati
Tutti i risultati [164]
Matematica [86]
Algebra [33]
Storia della matematica [24]
Geometria [13]
Fisica [18]
Analisi matematica [13]
Fisica matematica [12]
Temi generali [10]
Biologia [9]
Informatica [7]

Scienza greco-romana. La geometria da Apollonio a Eutocio

Storia della Scienza (2001)

Scienza greco-romana. La geometria da Apollonio a Eutocio Reviel Netz La geometria da Apollonio a Eutocio Il periodo di formazione del canone geometrico greco si estende dal 200 a.C. al 550 d.C., come [...] ’ e di conseguenza più vicina all’impostazione moderna. Zeuthen aveva ragione nel trovare in Apollonio elementi che vanno nella direzione dell’algebra moderna, ma i suoi critici hanno anch’essi ragione nel sottolineare che Apollonio non andava verso ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] da Connes. Esse si ottengono nel modo seguente. Sia ϕ una forma lineare normale su W con ∣ϕ∣ = ϕ (I) = 1 (I: elemento unitario dell'algebra) e ϕ (T*T) ≠ 0 per T ≠ 0 (una tale forma lineare si dice ‛stato fedele e normale' su W). M. Tomita associò ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La grande scienza. Combinatoria

Storia della Scienza (2003)

La grande scienza. Combinatoria Peter J. Cameron Combinatoria Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] di permutazioni e negli algoritmi per l'isomorfismo dei grafi) sono essenzialmente la stessa cosa delle algebre di matrici reali simmetriche che ammettono una base di matrici a elementi 0 e 1, compresa la matrice identica, e la cui somma è la matrice ... Leggi Tutto
CATEGORIA: ALGEBRA

Stereochimica

Enciclopedia del Novecento (1984)

Stereochimica Jack D. Dunitz di Jack D. Dunitz SOMMARIO: 1. Introduzione: a) primi concetti sull'isomeria; b) isomeri conformazionali. □ 2. Aspetti teorici: a) considerazioni geometriche; b) configurazione [...] della figura con tutti i siti equivalenti. L'aspetto algebrico della chiralità è stato studiato da Ruch (v., oppure, per un centro pseudoasimmetrico, r o s, all'atomo o ad altro elemento di asimmetria, o a ognuno di essi se ve ne sono diversi. Le ... Leggi Tutto
TAGS: RISONANZA MAGNETICA NUCLEARE – SALI DI AMMONIO QUATERNARIO – COMPOSTI DI COORDINAZIONE – ISOMERIA CONFORMAZIONALE – COMPOSTI ORGANOMETALLICI
Mostra altri risultati Nascondi altri risultati su Stereochimica (3)
Mostra Tutti

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] di F appartiene ancora a F, sicché F è un corpo. Un corpo ottenuto in questo modo è chiamato corpo di numeri algebrici. Ogni elemento di F può essere scritto in modo unico nella forma [15]. L'intero n è detto il grado di F. Esempi di corpi di ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] un vettore tangente è talvolta chiamato un vettore contravariante. Da Tp(M) e T*p(M) si può generare l'algebra tensoriale. Per esempio, un elemento di Tp⊗T*p⊗T*p, detto tensore di grado contravariante 1 e grado covariante 2 o tensore di tipo (1 ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] grado. Il grado, deg(I-C,G,p) si ottiene dal calcolo algebrico del numero di soluzioni dell'equazione: [6] (I-C)u=p, u di L2 dotato di una norma diversa. Per definizione, per ogni elemento u di H esiste una successione di funzioni lisce (un) tali ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] (s)+λ∫bαK(s,t)f(t)dt=g(t) nella quale le funzioni f e g sono elementi di C[a,b], K(s,t) è una funzione continua di s e t, e λ loro applicazioni alla fisica teorica dando inizio alla teoria delle algebre di operatori. Dopo il lavoro di Hilbert e prima ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Automi e linguaggi formali

Storia della Scienza (2003)

La grande scienza. Automi e linguaggi formali Dominique Perrin Automi e linguaggi formali La teoria degli automi e dei linguaggi formali ha lo scopo di descrivere le proprietà delle successioni di simboli. [...] u−1X∈F per u∈A* e X∈F. Si possono caratterizzare i linguaggi context-free su A come gli elementi di una sottoalgebra finitamente generata dell'algebra dei sottoinsiemi di A*. Per esempio, il linguaggio di Lukasiewicz L sull'alfabeto {a,b} soddisfa l ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – CIBERNETICA E INTELLIGENZA ARTIFICIALE

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] i tecnicismi che vi intervengono, possiamo dare un'idea dell'utilità di allargare l'ambito della geometria algebrica includendo gli anelli con elementi nilpotenti. Un teorema della teoria dei sistemi non lineari di curve ha svolto un ruolo centrale ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA
1 2 3 4 5 6 7 8 9 ... 17
Vocabolario
eleménto
elemento eleménto s. m. [dal lat. elementum (di origine incerta), con cui i Latini rendevano i varî significati del gr. στοιχεῖον «principio, rudimento, lettera dell’alfabeto»]. – 1. Nel sign. più ampio, si dicono elementi le sostanze semplici...
elementare
elementare agg. [dal lat. mediev. elementaris, lat. tardo elementarius]. – 1. a. Che ha natura di elemento o che si riferisce a un elemento: sostanze, corpi e., che non si possono scomporre, semplici; particelle e., quelle, come il neutrino,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali