Equazionifunzionali
Jacques-Louis Lions
La teoria delle equazionifunzionali si è sviluppata a stretto contatto con i problemi via via sorti nelle varie scienze, a partire dalla meccanica, e dalla [...] (plasticità, materiali bloccanti, ecc.) hanno portato allo studio sistematico delle equazioni del tipo A(u)=f dove A è un operatore multivoco. A(u) non è più un punto di uno spazio funzionale F, ma un suo sottoinsieme; in tal caso, si cerca u ...
Leggi Tutto
Variazioni, calcolo delle
Giuseppe Buttazzo
Gianni Dal Maso e Ennio De Giorgi
SOMMARIO: 1. Introduzione. 2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] serie i cui termini sono costruiti a partire dagli autovalori e dalle autofunzioni dell'operatore di Laplace (v. equazionifunzionali, vol. II). Risultati del tutto analoghi si ottengono nel caso di condizioni al contorno di Neumann, oppure qualora ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] teoria delle algebre di operatori. (Per una più estesa trattazione di argomenti correlati, v. analisi, vol. I; v. equazionifunzionali, vol. II).
2. Operatori lineari fra spazi di dimensione finita
a) Generalità
Siano dati due spazi vettoriali (detti ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] . Il complementare dell'insieme dei valori regolari, Sp(U), si continua a chiamare lo spettro di U. Nessuna teoria delle equazionifunzionali lineari sarebbe possibile senza porre delle ipotesi piuttosto forti per lo spazio E e per l'operatore U; con ...
Leggi Tutto
Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] della scienza, Roma, Istituto della Enciclopedia Italiana, 2003, IX, pp. 293-301.
Lions 1977: Lions, Jacques-Louis, Equazionifunzionali, in: Enciclopedia del Novecento, Roma, Istituto della Enciclopedia Italiana, XII, pp. 709-719.
Lions 1984: Lions ...
Leggi Tutto
L'Ottocento: matematica. Metodi del calcolo numerico
Dominique Tournès
Metodi del calcolo numerico
Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] un tubo o da una goccia di liquido su una superficie piana.
Per quanto riguarda le equazioni alle derivate parziali, le equazioni integrali e le equazionifunzionali più generali, vi sono tentativi sporadici di risoluzione, più o meno eterogenei, che ...
Leggi Tutto
spazio delle distribuzioni
Luca Tomassini
Una generalizzazione del concetto classico di spazio di funzioni, la cui necessità si presenta in molti problemi fisici e matematici. Il concetto di distribuzione [...]
e per questa ragione si usa affermare che la δ di Dirac è una funzione nulla ovunque tranne che nell’origine di ℝn, dove vale +∞. È quindi chiaro che in generale una distribuzione può non essere definita in un singolo punto.
→ Equazionifunzionali ...
Leggi Tutto
spazio vettoriale topologico
Luca Tomassini
Lo sviluppo di settori dell’analisi funzionale, quali per esempio la teoria delle distribuzioni, ha mostrato che in molti casi è utile considerare spazi lineari [...] cui ogni insieme aperto non vuoto contiene un aperto non vuoto convesso. Questi spazi sono particolarmente importanti in quanto per essi vale il teorema di Hahn-Banach, che garantisce l’esistenza di funzionali lineari continui.
→ Equazionifunzionali ...
Leggi Tutto
trasformata di Laplace
Luca Tomassini
Nozione introdotta da Pierre-Simon de Laplace nel suo famoso Théorie analitique des probabilités (1812) e da lui utilizzata per risolvere equazioni differenziali [...] ’ultima, che si è rivelata fondamentale per es. nella teoria dei campi quantistica, dove i campi stessi sono appunto definiti come distribuzioni con valori nello spazio degli operatori (non-limitati) su uno spazio di Hilbert ℋ.
→ Equazionifunzionali ...
Leggi Tutto
spazio duale
Luca Tomassini
Dato uno spazio vettoriale reale (o complesso) X si definisce il suo duale Y come lo spazio vettoriale reale (o complesso) costituito dai funzionali lineari su X, ovvero [...] per ogni x∈X. È dunque possibile considerare lo spazio duale X** di X*, detto biduale di X. In generale X⊂X**, dove l’inclusione può anche essere stretta. Se X=X** lo spazio X è detto riflessivo e X e X* sono detti in dualità.
→ Equazionifunzionali ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
sistema
sistèma s. m. [dal lat. tardo systema, gr. σύστημα, propr. «riunione, complesso» (da cui varî sign. estens.), der. di συνίστημι «porre insieme, riunire»] (pl. -i). – 1. Nell’ambito scientifico, qualsiasi oggetto di studio che, pur...