La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] e quindi 1/p+1/q=1. La relazione tra p e q è simmetrica, dunque p=q/(q−1). Riesz dimostrò che se F è un funzionalelineare continuo su Lp, allora per ogni f in Lp vale la [10] con Φ elemento di Lq univocamente determinato da F. Inoltre, la norma di F ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria della misura
Maurice Sion
La teoria della misura
Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] una funzione che assegna un valore a ogni integrando, cioè come funzione di una funzione: da ciò nasce l'idea di 'funzionalelineare'. Si parte con una famiglia primitiva di funzioni (per es., quelle a gradini o quelle continue e limitate) per le ...
Leggi Tutto
CACCIOPPOLI, Renato
Alessandro Figà Talamanca
Nacque a Napoli il 20 genn. 1904. Suo padre, Giuseppe, era un noto chirurgo napoletano, sua madre, Sofia, era figlia del celebre rivoluzionario russo Michail [...] pp. 470-473.
Partendo dal caso di un funzionalelineare, il C. considera successivamente funzionali bilineari e multilineari, funzionali quadratici e omogenei di grado qualunque ed infine funzionali che sono solo continui. Le sue ricerche in questo ...
Leggi Tutto
Fourier Jean-Baptiste-Joseph
Fourier 〈furié〉 Jean-Baptiste-Joseph [STF] (Auxerre 1768 - Parigi 1830) Prof. nella École Normale e nella École Polytechnique di Parigi, membro della Académie des sciences [...] della trasformata di Fourier (v. oltre). ◆ [ANM] Trasformata di F.: la trasformazione di F. è una trasformazione funzionalelineare che fa passare dalla funzione complessa f(t) della variabile reale t alla funzione complessa della variabile reale ω ...
Leggi Tutto
spazio delle distribuzioni
Luca Tomassini
Una generalizzazione del concetto classico di spazio di funzioni, la cui necessità si presenta in molti problemi fisici e matematici. Il concetto di distribuzione [...] una distribuzione è definita come un funzionalelineare continuo φ su un qualche spazio vettoriale nell’origine di ℝn, dove vale +∞. È quindi chiaro che in generale una distribuzione può non essere definita in un singolo punto.
→ Equazioni funzionali ...
Leggi Tutto
operatori hermitiani
Luca Tomassini
Sia A:ℋ→ℋ un operatore lineare continuo (limitato) di uno spazio di Hilbert in sé e siano (∙,∙) il prodotto scalare di ℋ e ∣∣∙∣∣ la norma da esso indotta. Fissato [...] y∈ℋ, la formula (Ax,y) definisce un funzionalelineare, cui corrisponde per il teorema di Riesz un unico elemento z∈ℋ tale che (x,z)=(Ax,y). L’operatore aggiunto (coniugato hermitiano) A* di A è definito dalla formula z=A*y e soddisfa l’uguaglianza ( ...
Leggi Tutto
spazio duale
Luca Tomassini
Dato uno spazio vettoriale reale (o complesso) X si definisce il suo duale Y come lo spazio vettoriale reale (o complesso) costituito dai funzionali lineari su X, ovvero [...] (dotato della topologia localmente convessa τ), Y è lo spazio di tutti i funzionali lineari continui su X (rispetto alla topologia τ) e (x,x′)=x′(x in X* segue dalla definizione stessa di funzionalelineare, il viceversa è invece una conseguenza di ...
Leggi Tutto
misura di Wiener
Luca Tomassini
Una misura di probabilità sullo spazio C([0,1],ℝ) delle funzioni continue a valori reali sull’intervallo chiuso [0,1] definita come segue. Siano 0⟨t1⟨...⟨tν≤1 punti arbitrari [...] boreliani di C([0,1],ℝ) generata dai C(t1,...,tν;A1,...,Aν). Sia ora F:C([0,1],ℝ)→ℝ un funzionalelineare a valori reali misurabile (nel senso di Lebesgue) rispetto alla misura μϬ. In maniera analoga alla procedura utilizzata per definire ...
Leggi Tutto
OPERATORI
Fernando BERTOLINI
. 1. Generalità. - Il termine o. indica d'ordinario il simbolo d'una operazione, o più in generale d'una applicazione univoca (v. applicazione, in questa App.); per una [...] γ1, γ2εΓ e a1, a2εA; nel caso particolare che sia B = Γ, invece di dire operatore lineare da A in Γ, si dice di solito funzionalelineare di A.
Esempî. - L'insieme A delle funzioni reali di due variabili reali, indefinitamente derivabili in tutto ...
Leggi Tutto
ASCOLI, Guido
Nicola Virgopia
Nato a Livorno il 12 dic. 1887, studiò a Pisa e ivi si laureò a soli 20 anni (1907) svolgendo con L. Bianchi una tesi di laurea sulle singolarità delle funzioni analitiche. [...] va anche ricordato per i suoi lavori sulla teoria degli spazi astratti e per le applicazioni di questa all'analisi funzionalelineare. I suoi risultati in tale campo sono indipendenti da quelli del matematico austriaco Hans Hahn e del polacco Stefan ...
Leggi Tutto
indipendenza
indipendènza s. f. [der. di indipendente]. – 1. Condizione di chi o di ciò che è indipendente, riferito sia a stato o nazione, sia a persona, sia a cose, fatti, ecc.: i. politica, economica, amministrativa; conquistare, perdere,...
esternalizzazione delle frontiere loc. s.le f. Nelle politiche europee tese a ostacolare l'accesso dei migranti all'interno del territorio degli Stati membri, spostamento dei confini verso zone extraterritoriali, in modo da trasferire a Paesi...