Fermat, ultimo teorema di
MMassimo Bertolini
di Massimo Bertolini
SOMMARIO: 1. Introduzione. ▭ 2. Storia: il lavoro di Kummer. ▭ 3. Estensioni abeliane di Q. ▭ 4. Estensioni esplicite di campi e funzioni [...] algebrica p(x) = 0, dove p(x) è un polinomio irriducibile a coefficienti razionali non tutti nulli. Indichiamo con Q.(α) equazione algebrica a coefficienti interi, con coefficiente del monomio di grado più alto uguale a 1). Sia poi K∞ il sottocampo ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] campo finito. Tale scoperta apre la strada alla ricerca di un algoritmo efficace per la fattorizzazione dei polinomi a coefficienti interi, in grado di sostituire l'algoritmo di Kronecker che possiede uno scarsissimo valore pratico. L'idea è quella ...
Leggi Tutto
Probabilità
Gian-Carlo Rota e Joseph P.S. Kung
*La voce enciclopedica Probabilità è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un contributo di Marco Li Calzi.
sommario: 1. Introduzione. [...] che i coefficienti ak siano variabili casuali indipendenti equidistribuite. Per esempio, Bloch e Pólya hanno considerato i polinomi casuali a valori reali di grado n
Pn(x) = xn + an-1cn-1 + ... + a1x + a0,
sotto l'ipotesi che, per ogni 0 ≤ k ...
Leggi Tutto
Logica matematica
Abraham Robinson
*La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] le due proprietà seguenti: a) ogni numero positivo ha una radice quadrata; b) ogni polinomio in una variabile e di grado n ha una radice (detta anche uno ‛zero' del polinomio), dove n è un intero dispari. Sia ora R′ un altro corpo ordinato che ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. Dalla Geometrie al calcolo: il problema delle tangenti...
Enrico Giusti
Dalla Géométrie al calcolo: il problema delle tangenti e le origini del [...] 'intersezione doppia in P0 con la curva. Analiticamente, se la curva ha equazione P(x,y)=0 (con P polinomio di grado arbitrario), si elimina una delle variabili, per esempio la y, dal sistema formato dalle equazioni della curva e della circonferenza ...
Leggi Tutto
Numeri, teoria dei
LLarry Joel Goldstein
di Larry Joel Goldstein
SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] xn+a1xn-1+...+an a coefficienti razionali irriducibile sui razionali che ha α come zero. L'intero n è detto il ‛grado' di α e f(x) è detto il ‛polinomio minimo' di α. Indichiamo con F l'insieme di tutti i numeri della forma
ϑ=x0+x1α+x2α2+...+xn-1αn-1 ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] il processo di integrazione di una funzione razionale non presenta alcuna difficoltà.
La dimostrazione del teorema per un polinomio di grado dispari, a coefficienti reali, si basa su una proprietà dei numeri reali. Dopo aver ridotto, senza perdere di ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. L'algebra e il suo ruolo unificante
Roshdi Rashed
L'algebra e il suo ruolo unificante
La seconda metà del VII sec. vede il costituirsi [...] di possibilità di ciascuna equazione, e ciò lo porta a studiare in modo sistematico il massimo di un polinomio di terzo grado per mezzo dell'equazione derivata. Nel corso della risoluzione numerica al-Ṭūsī non applica soltanto algoritmi dove si ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] radici siano distinte. Le permutazioni di tali radici formano un gruppo di ordine al più n!, e si possono scrivere polinomi di grado n per i quali il gruppo di permutazioni delle radici coincide con il gruppo delle permutazioni di n lettere. Tuttavia ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] le successioni un=(an−bn)/(a−b) e vn=an+bn, nel caso in cui a e b siano le radici di un polinomio di secondo grado a coefficienti interi primi tra loro. Gli un, per n dispari, dividono l'espressione x2−aby2; Lucas ne dedusse la legge secondo la ...
Leggi Tutto
polinomio
polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
grado1
grado1 s. m. [lat. gradus -us «passo, scalino», dallo stesso tema di gradi «camminare, avanzare»]. – 1. a. ant. Gradino, scalino: Scala drizzò di cento gradi e cento (T. Tasso). Più raram., passo: deh ferma un poco il g. (Boccaccio)....