L'Ottocento: matematica. Equazioni differenziali alle derivate parziali
Thomas Archibald
Equazioni differenziali alle derivate parziali
Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] mise a punto tecniche per individuare massimi e minimi, ma definì 'odioso' il caso di una funzione di tre variabili e non riuscì a trovare un procedimento generale. Il metodo dei moltiplicatori diLagrange per la soluzione di problemi di estremo ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] di moltiplicazione di numeri grandi che ha favorito a sua volta la revisione di tutti i metodi di calcolo dal puntodi sia somma di due numeri primi (ogni numero dispari ≥7 sarebbe allora somma di tre numeri primi). Nel 1770 Lagrange dimostrò che ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] {xn} dipunti a un punto x. In tale contesto definiva il concetto dipunto limite di un insieme S dipunti della L-classe: x è un punto limite di S se esiste una successione {xn} dipuntidi S, tutti distinti, convergente a x. Un punto limite di un ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] e con ∣v(x)−u(x)∣⟨δ in ogni puntodi [a,b]. Le condizioni necessarie di Euler e di Legendre valgono anche per i minimi locali. Supponiamo di gradi di libertà. Nella formulazione diLagrange le equazioni del moto di un sistema meccanico a m gradi di ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] via via da matematici come Eulero, Joseph-Louis Lagrange, Adrien-Marie Legendre, Carl F. Gauss, e puntidi una retta, le coppie (o terne) di numeri reali corrispondono ai puntidi un piano (oppure di uno spazio tridimensionale). Si trattò di ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] si chiama equicontinuo se è equicontinuo in ogni puntodi X. Se X, per esempio, è un insieme aperto di ℝn, se le funzioni appartenenti ad H di Leonhard Euler e Joseph-Louis Lagrange consisteva nell'ammettere per ipotesi l'esistenza nell'insieme A di ...
Leggi Tutto
L'Eta dei Lumi: matematica. La teoria dei numeri
Günther Frei
La teoria dei numeri
La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] valore intero come discriminante.
Gauss perfezionò la teoria diLagrange, e la sviluppò in forma sistematica, e da molti puntidi vista definitiva, nelle sue Disquisitiones arithmeticae.
Legge di reciprocità dei residui quadratici: Euler
A partire ...
Leggi Tutto
Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] , non solo i minimi ma tutti i punti critici di un funzionale sono soluzioni dell'equazione di Euler-Lagrange e in molti casi può accadere che le soluzioni non banali di tale equazione siano invece dei puntidi sella. La loro determinazione è l ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] negative).
Per i teoremi diLagrange dei quattro quadrati e di Legendre dei tre quadrati, il minimo s5s(e) per l'esponente e52 è s5s(2)54. Waring non riuscì a dimostrare il suo teorema. David Hilbert (1862-1943) dimostrò nel 1909 il punto 3 e la sua ...
Leggi Tutto
L'Ottocento: matematica. Metodi del calcolo numerico
Dominique Tournès
Metodi del calcolo numerico
Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] a vapore, dimostrò che l'interpolazione diLagrange nell'intervallo [−1,1] è ottimale nel senso dell'approssimazione uniforme quando gli n puntidi interpolazione sono le radici del polinomio di Chebyshev di grado n, definito dalla:
Le ricerche ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...