Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] L (E); ρ (T) = Cσ (T) si dice ‛insieme risolvente' di T. Vale la seguente proposizione fondamentale: lo spettro σ (T) è un sottoinsiemecompatto, non vuoto, di C; per ∣λ∣ > lim ∥Tn∥1/n vale sempre λ ∈ ρ (T). Il limite di tale teorema esiste sempre ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] X (considerato come spazio dei caratteri di A) in ℂ è un omeomorfismo di X sullo spettro di H, che è un sottoinsiemecompatto della retta reale ℝ; si identifica X con questo spettro. L'operatore in A che corrisponde alla funzione continua f∈Cℂ(X) si ...
Leggi Tutto
autovalore
Luca Tomassini
Tanto in algebra quanto in analisi, si è frequentemente condotti a definire e a calcolare delle funzioni (inverso, potenze, esponenziali ecc.) di un endomorfismo A:V→V di uno [...] l’insieme dei λ in K tali che (A−λI) non possiede un inverso. Appaiono allora nuovi e interessanti fenomeni: sp(A) continua a essere un sottoinsiemecompatto di ℂ, ma non necessariamente a ogni suo elemento corrisponde un autovettore.
→ Stocastica ...
Leggi Tutto
Agraria
Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine [...] . subordinata) di una data v. V; si tratta di un sottoinsieme di V che ha una struttura di v. dello stesso tipo della se inoltre S gode di attributi particolari (spazio connesso, compatto, non compatto ecc.) gli stessi attributi si applicano alla v. ...
Leggi Tutto
Misura e integrazione
M. Evans Munroe
Introduzione
La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...]
τ(G)=sup{τ0(C)∣C⊂G; C compatto}.
Utilizzando ϑ e τ nel solito modo, si ottiene una misura di Haar invariante a sinistra.
Uno spazio di misura è una terna (X, Σ, μ) costituita da un insieme X, da una σ-algebra Σ di sottoinsiemi di X e da una misura μ ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] . Il risultato, per gli spazi metrici, è che un insieme S in uno spazio metrico può essere chiamato compatto se e solo se, ogni sottoinsieme infinito di S ammette un punto limite in S (e non semplicemente nello spazio).
Parlare di uso del termine ...
Leggi Tutto
Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] per trovare tali punti è giocato dalle deformazioni. Se A è un sottoinsieme di M e η∈C(A,M), diremo che η è una _))≤f(p)−c. Da questo si può dedurre un lemma di deformazione:
Se M è compatta e nella striscia {x∈M tali che a≤f(x)≤b} non ci sono punti ...
Leggi Tutto
Equazioni funzionali
Jacques-Louis Lions
La teoria delle equazioni funzionali si è sviluppata a stretto contatto con i problemi via via sorti nelle varie scienze, a partire dalla meccanica, e dalla [...] u) non è più un punto di uno spazio funzionale F, ma un suo sottoinsieme; in tal caso, si cerca u tale che f∈A(u).
Quanto è (Ω) in Hm(Ω) (D(Ω) è lo spazio delle funzioni C∞ a supporto compatto in Ω) e con H−m(Ω) il duale di H0m(Ω).
Il problema di ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] : III 79 e. ◆ Cubo di H.: particolare sottoinsieme in uno spazio di H. a infinite dimensioni, costituito dalle successioni tali che 0≤xi≤2-i, con i=1,2,...; è il prototipo di insieme compatto in uno spazio infinitodimensionale. ◆ Disuguaglianza di H ...
Leggi Tutto
sconnesso
sconnèsso agg. [part. pass. di sconnettere]. – 1. Che non è ben connesso, che non forma un tutto unito e compatto: un assito, uno steccato, un tavolo s.; il soffitto era di assicelle di legno sconnesse (C. Levi); si riscosse quando...