Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] xn∈En tali che ∑n∥T∙xn∥2〈+∞. Ciascuno degli En è allora isomorfo a uno spazio L2ℂ(Xn,μn), dove Xn è un sottoinsiemelimitato di X e μn è una misura positiva su Xn, e la restrizione di T a En può essere identificata con la moltiplicazione della classe ...
Leggi Tutto
metodo ai volumi finiti
Alfio Quarteroni
Metodo numerico per l’approssimazione della soluzione di un’equazione (o di un sistema di equazioni) alle derivate parziali. Sia Ω un sottoinsiemelimitato di [...] ℝδ, con d=2,3, e su tale dominio consideriamo, per es., il problema matematico: trovare una funzione u (scalare per semplicità) dipendente dal tempo e dallo spazio, tale che per ogni x=(x1,…,xδ)∈Ω e t>0 ...
Leggi Tutto
metodo agli elementi finiti
Alfio Quarteroni
Metodo numerico per l’approssimazione della soluzione di un’equazione (o di un sistema di equazioni) alle derivate parziali. Sia Ω un sottoinsiemelimitato [...] di ℝδ, con d=2,3, e su tale dominio consideriamo, per es., il seguente problema: trovare una funzione u dipendente dalla variabile spaziale, tale che per ogni x=(x1,…,xδ)∈Ω valga −Δu= f con un’opportuna ...
Leggi Tutto
Attributo di disciplina che utilizza nell’indagine teorica l’elaboratore elettronico come sistematico strumento di lavoro, per es. la meccanica c., la linguistica c.; si dice c. anche il procedimento che [...] ), si simula in modo dettagliato l’evoluzione di un sottoinsieme della popolazione stessa, al fine di ricostruire in modo in fisica dei plasmi, in cui si simula un insieme limitato di particelle campione. A ogni passo temporale (discreto) della ...
Leggi Tutto
In matematica, si chiamano metodi, o procedimenti di a. o, semplicemente, a., procedure alle quali si ricorre per rappresentare enti matematici (numeri, misure, funzioni ecc.) in modo non esatto, ma sufficientemente [...] √2 può essere rappresentato dal numero decimale limitato 1,4142 che lo approssima a meno di mediante gli elementi di E′. Dato uno spazio metrico E, un suo elemento x e un suo sottoinsieme E′, si dirà che l’elemento y di E′ è la migliore a. di x in ...
Leggi Tutto
Variazioni, calcolo delle
Giuseppe Buttazzo
Gianni Dal Maso e Ennio De Giorgi
SOMMARIO: 1. Introduzione. 2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] di area minima a volume assegnato: dato un dominio limitato Ω dello spazio euclideo n-dimensionale e fissata una costante c minore del volume n-dimensionale di Ω, si tratta di trovare i sottoinsiemi E di Ω che rendono minimo il perimetro P (E ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] cui è sup {∥x∥: x ∈ B} 〈 + ∞. Siano E, F normati e T: E → F un operatore (lineare) che porta i sottoinsiemilimitati di E in sottoinsiemilimitati di F di modo che ∥T∥ - : = sup {∥Tx∥ : ∥x∥ ≤ 1} definirà una norma sullo spazio L (E, F) di tutti gli ...
Leggi Tutto
Misura e integrazione
M. Evans Munroe
Introduzione
La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] e si annulla sull'insieme vuoto. Se μ* è una misura esterna sui sottoinsiemi di X, un insieme E⊂X si chiama μ*-misurabile se
μ*(A μ la misura di Lebesgue sulla retta reale e sia f una funzione misurabile limitata su [a, b] con c≤f(x)〈d per x∈[a, b]. ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] può essere chiamato compatto se e solo se, ogni sottoinsieme infinito di S ammette un punto limite in S (e sullo spazio C[a,b], allora esiste una funzione reale a variazione limitata α(s), definita sull'intervallo [a,b], tale che la rappresentazione ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] XX. Data una regione ω di ℝn, è possibile definire per ogni sottoinsieme E di ℝn un ben determinato valore P(E,ω), finito o a ω.
Si dice che un insieme E ha 'frontiera minima' in un dominio limitato ω se P(E,ω)⟨+∞ e P(E,ω)≤P(F,ω) per ogni altro ...
Leggi Tutto
finito
agg. [part. pass. di finire]. – 1. a. Giunto o condotto a termine, compiuto: arrivare a spettacolo f.; sono ormai due anni f. che ha lasciato il paese. Frequente nell’uso fam. la locuz. farla finita (con la indeterminato), smettere...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...