RELATIVITÀ
Christian Moller
Tullio Regge
Eugenio Garin
Relatività di Christian Møller
sommario: 1. Introduzione e panorama storico: a) il principio di relatività speciale. Sistemi inerziali; b) relatività [...] iniziali. I vettori di Killing formano uno spazi o vettoriale, poiché la combinazione lineare a coefficienti costanti di due vettori è ancora un vettore di Killing. Questo spazio è isomorfo a un sottospazio lineare di quello dei dati iniziali ξμ, ξμ ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] insieme di tutte le funzioni razionali f tali che (f) + D ≥ 0 è chiaramente uno spazio vettoriale, denotato con L (D). Se D ≥ 0, dire che f ∈ L (D) equivale a matematico, un codice è un sottospazio lineare di uno spazio vettoriale su un campo finito ( ...
Leggi Tutto
Teorie unificate
MMirza A. B. Bég
di Mirza A. B. Bég
SOMMARIO: 1. Introduzione. □ 2. La sintesi elettrodebole: dinamica quantistica dei sapori: a) osservazioni preliminari; b) le interazioni deboli [...] e Lee, 1973)
e
dove μ2 e M2 sono i quadrati delle matrici di massa dei mesoni vettoriali e degli scalari di Higgs, P è un operatore di proiezione sul sottospazio a N − M dimensioni sotteso dai bosoni di Goldstone e ξ è un parametro che specifica ...
Leggi Tutto
Simmetrie e invarianze
LLuigi A. Radicati di Brozolo
di Luigi A. Radicati di Brozolo
SOMMARIO: 1. Introduzione e brevi cenni storici. □ 2. La struttura dello spazio-tempo assoluto. □ 3. Il ruolo della [...] degli operatori unitari su ℋ che associa a ogni g∈G l'operatore unitario Ug. Un sottospazio ℋα⊂ℋ (o Aα(ℋ)⊂A(ℋ)) si dice G-invariante se, per ogni g∈G, tre potenziali legati alle interazioni deboli (mesoni vettoriali W+, Z0, W-) acquistano una massa ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] Operatori lineari limitati
Sia (come nel cap. 2, § a) E uno spazio vettoriale su K = R o K = C. Si dice che E è ‛normato' ′ ϕ, x> per tutti gli x in D(A), il cui dominio è il sottospazio D(A′) di tutti quei ϕ in E′, per cui l'applicazione x in D(A) ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] .
Il primo capitolo inizia illustrando l'idea generale di spazio vettoriale topologico su un campo valutato. La completezza conduce agli spazi di Banach. Si studiano i sottospazi, le parti equilibrate, le parti assorbenti. Intervengono poi le varietà ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] chiusa. Lo spazio quoziente delle r-forme chiuse modulo il sottospazio delle r-forme esatte è il gruppo di coomologia di de allora ∇K è di tipo (r, s+1). Se X è un campo vettoriale e se f è una funzione definita in M, allora
∇f•X)=df•X+f ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] −0∥. Si può allora considerare C[a,b] uno spazio vettoriale di dimensione infinita. Il significato di convergenza di una successione {fn . Supponiamo che lo spazio X sia completo e sia S un sottospazio del duale coniugato X′. Se per ogni x in X esiste ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] proiettive, e lo spazio proiettivo un sottospazio dello spazio euclideo. Klein attribuiva molta di stabilire sotto quali condizioni una n-varietà ammette n campi vettoriali ovunque linearmente indipendenti, una ricerca che lo portò a studiare ...
Leggi Tutto
Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] , il suo indice di Morse è, per definizione, la dimensione del sottospazio di ℝn dove la matrice D2fM(p) è definita negativa. Se k un caso particolare ma significativo. Consideriamo uno spazio vettoriale H dove è definito un prodotto scalare (u∣v ...
Leggi Tutto
sottospazio
sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
supplemento
suppleménto (ant. o raro suppliménto) s. m. [dal lat. supplementum, der. di supplere: v. supplire]. – 1. Ciò che serve a supplire, a sostituire una cosa mancante: quel rimbombo ... delle varie campane ... pareva, per dir così,...