• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
20 risultati
Tutti i risultati [152]
Analisi matematica [20]
Matematica [91]
Algebra [27]
Fisica [24]
Geometria [19]
Storia della matematica [22]
Fisica matematica [17]
Biografie [11]
Temi generali [8]
Filosofia [8]

operatore

Enciclopedia on line

Biologia In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone). Filosofia In filosofia analitica, un’espressione [...] o. svolgono un ruolo fondamentale nella meccanica quantistica, nel cui schema teorico gli stati di un sistema sono rappresentati dai vettori di uno spazio di Hilbert ℋ e le sue variabili dinamiche da o. lineari in ℋ (➔ meccanica); in questo contesto ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – GENETICA – MESTIERI E PROFESSIONI – FISICA MATEMATICA – MECCANICA QUANTISTICA – ANALISI MATEMATICA – LOGICA MATEMATICA – FILOSOFIA DEL LINGUAGGIO – METAFISICA
TAGS: QUANTIFICATORE ESISTENZIALE – GEOMETRIA DIFFERENZIALE – MECCANICA QUANTISTICA – SISTEMI DIFFERENZIALI – ANELLO DEI POLINOMI
Mostra altri risultati Nascondi altri risultati su operatore (2)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] x∣ = ∣x∣2. Allora A è isomorfa a una sottoalgebra chiusa di ℒ (H) per un appropriato spazio di Hilbert H. Se T è un operatore normale su di uno spazio di Hilbert H, l'algebra di operatori da esso generata è commutativa e, in base al teorema spettrale ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] teoria degli operatori su uno spazio di Hilbert e alle loro applicazioni alla fisica teorica dando inizio alla teoria delle algebre di operatori. Dopo il lavoro di Hilbert e prima di quello di von Neumann sugli spazi di Hilbert, Riesz presentò la sua ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] 0. Questo è tutto ciò che si può dire in generale per operatori compatti arbitrari; perfino in uno spazio di Hilbert, lo spettro può consistere di qualsiasi successione (λn) tendente a 0. Questo spettro può anche ridursi a 0, il che accade sempre per ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] H=W01,2(Ω) delle funzioni u∈L2(Ω) che hanno derivate, nel senso delle distribuzioni, in L2(Ω) e si annullano al bordo di Ω. H è uno spazio di Hilbert rispetto al prodotto scalare (u∣v)=∫Ω∇u∙∇vdx. Inoltre è noto che W01,2(Ω)⊂Lq(Ω) non appena 1≤q≤2 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

L'Ottocento: matematica. Equazioni differenziali ordinarie

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali ordinarie Jeremy Gray Equazioni differenziali ordinarie Variabili reali Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] ] sono uguali a π. Le [7] e [8] sono note come relazioni di ortogonalità delle funzioni trigonometriche (la terminologia è quella della teoria degli spazi di Hilbert ed è stata introdotta all'inizio del XX secolo). Partendo dalle relazioni precedenti ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

autovalore

Enciclopedia della Scienza e della Tecnica (2008)

autovalore Luca Tomassini Tanto in algebra quanto in analisi, si è frequentemente condotti a definire e a calcolare delle funzioni (inverso, potenze, esponenziali ecc.) di un endomorfismo A:V→V di uno [...] che lo rappresenta in questa base è diagonale. La generalizzazione di questi concetti al caso di spazi vettoriali a dimensione infinita (in particolare a spazi di Hilbert) costituisce l’oggetto della teoria spettrale, sviluppatasi dalla fine del ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: ANALISI FUNZIONALE – SPAZIO VETTORIALE – RAGGIO SPETTRALE – DIAGONALIZZABILE – PIANO COMPLESSO
Mostra altri risultati Nascondi altri risultati su autovalore (4)
Mostra Tutti

hermitiano

Dizionario delle Scienze Fisiche (1996)

hermitiano hermitiano [agg. e s. Der. del cognome di C. Hermite] (a) [ALG] [ANM] Qualifica di enti legati in qualche modo a forme h. e a matrici h. (v. oltre): metriche h., operatore h., prodotti h., [...] B, B è un operatore hermitiano. ◆ [ANM] Operatore h., o hermitiano s.m.: operatore lineare definito in un sottoinsieme D(a) denso in uno spazio di Hilbert H, tale che per ogni x, y in D(a) si ha (Ax,y)=(x,Ay); quando A è limitato, si può estendere l ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] diretti del calcolo delle variazioni in cui si utilizzano largamente concetti di analisi funzionale - per esempio gli spazi a infinite dimensioni di Hilbert e di Banach - e di moderna teoria della misura, che intervengono, per esempio, nella ricerca ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] [11] è opportuno utilizzare gli spazi di Lebesgue e di Sobolev. Dato un esponente p≥1, lo spazio di Lebesgue Lp(ω) è costituito dalle a A. Haar (1927), utilizza il metodo di Hilbert per l'integrale di Dirichlet. L'estensione al caso n-dimensionale è ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
1 2
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
hilbertiano
hilbertiano 〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali