• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
31 risultati
Tutti i risultati [355]
Storia della matematica [31]
Matematica [158]
Fisica [80]
Fisica matematica [58]
Algebra [53]
Analisi matematica [37]
Geometria [33]
Temi generali [31]
Storia della fisica [27]
Statistica e calcolo delle probabilita [25]

massimi e minimi

Enciclopedia on line

Espressione con cui si indica l’argomento di molte ricerche matematiche, intese a individuare le massime e le minime grandezze tra un certo numero di grandezze assegnate, oppure i valori massimi e minimi [...] minimi Ricordiamo anzitutto il classico teorema di Weierstrass: una funzione continua in un insieme chiuso e limitato di uno spazio euclideo a un numero qualunque di dimensioni vi ammette sempre almeno un massimo e almeno un minimo. Più generalmente ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
TAGS: METODO DEI MOLTIPLICATORI DI LAGRANGE – FUNZIONI DI DUE O PIÙ VARIABILI – INSIEME DI DEFINIZIONE – SPAZIO TOPOLOGICO – FUNZIONE CONTINUA

La grande scienza. Cronologia scientifica: 1971-1980

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1971-1980 1971-1980 1971 I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] i metodi topologici, in cui si cerca di generalizzare proprietà geometriche delle funzioni definite su uno spazio euclideo a funzionali definiti su spazi di Banach. Sviluppi sulle congetture di Goldbach e dei primi gemelli. La congettura di Goldbach ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La grande scienza. Cronologia scientifica: 1951-1960

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1951-1960 1951-1960 1951 Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] , dimostra che ogni varietà riemanniana di dimensione n può essere immersa in modo isometrico in uno spazio euclideo di dimensione sufficientemente alta. Questo risultato, di grande importanza poiché unifica due branche della geometria differenziale ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] particolarmente interessato ai gruppi che possono agire su una varietà di dimensione piccola, con il che egli intendeva uno spazio (euclideo, affine o proiettivo) in un numero qualsiasi di variabili. Riuscì a classificarli per n=1, 2 e 3 variabili ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] che il problema non era che la superficie non esistesse, ma che potesse non essere immersa isometricamente nello spazio euclideo tridimensionale (Tav. II). Nel 1868 il matematico italiano Eugenio Beltrami riuscì a costruire una tale superficie e nel ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele Peter Schreiber Geometria analitica, delle curve e delle superfici. Il problema delle parallele A [...] non professionisti, il metodo delle coordinate non gioca in generale alcun ruolo. L'organizzazione del metodo delle coordinate dello spazio euclideo a due e tre dimensioni in una teoria unitaria, che per la prima volta vede uniti metodi e risultati ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] di compatto. Naturalmente Weierstrass lavorava con funzioni definite al variare di x sulla retta dei numeri reali o in uno spazio euclideo di dimensione maggiore o uguale a 2. Il concetto di limitatezza non ha significato in una L-classe nella quale ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] u tangente a una superficie in un punto P nel modo seguente. Egli suppone che la superficie sia immersa nello spazio euclideo tridimensionale; il vettore u è dunque parallelo a un unico vettore v applicato in un altro punto P′ della superficie ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] di una misura m è definita dalla formula [8] F(t)=∫eitxdm(x). Nel 1933 Bochner dimostrò che in ogni spazio euclideo la trasformata di Fourier stabilisce una corrispondenza biunivoca tra le misure positive limitate e certe funzioni continue note come ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. La geometria non euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. La geometria non euclidea Rossana Tazzioli La geometria non euclidea Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] postumo nel 1876, dove verrà introdotta un'espressione denominata in seguito 'tensore di curvatura di una varietà'. Lo spazio euclideo tridimensionale è dunque una varietà a tre dimensioni, la cui curvatura è nulla in ogni punto. Dalle misurazioni ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA
1 2 3 4
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
euclidèo
euclideo euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali