• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
139 risultati
Tutti i risultati [270]
Matematica [139]
Fisica [41]
Algebra [40]
Analisi matematica [39]
Storia della matematica [33]
Geometria [23]
Fisica matematica [24]
Temi generali [19]
Biografie [18]
Filosofia [16]

completo

Dizionario delle Scienze Fisiche (1996)

completo complèto [agg. Der. del part. pass. completus del lat. complere "compiere sino alla fine" e quindi "che ha tutte le sue parti, intero"] [ALG] [ANM] Di ente non contenuto in altro ente più ampio; [...] complessi c₁, ..., cn tale che la norma del-l'elemento x-Σk ckxak per k da 1 a n risulta minore di ε; in uno spazio di Hilbert ciò equivale a dire che l'unico elemento ortogonale a tutti gli elementi del sistema è l'elemento nullo; v. anche equazioni ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Uryson Pavel Samuilovic

Dizionario delle Scienze Fisiche (1996)

Uryson Pavel Samuilovic Uryson (o Urysohn) 〈urïsòn〉 Pavel Samuilovič [STF] (Odessa 1898 - Batz, Loira, 1924) Libero docente di matematica nell'univ. di Mosca (1921). ◆ [ALG] Lemma di U.: afferma che [...] che f(x)=0 se x∈A, f(x)=1 se x∈B, 0≤f(x)≤1 se x∉A⋃B. ◆ [ANM] Teorema di U.: ogni spazio topologico normale, provvisto di una base numerabile di aperti, è omeomorfo a un sottospazio di uno spazio di Hilbert (e pertanto, in partic., è metrizzabile). ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su Uryson Pavel Samuilovic (2)
Mostra Tutti

semidefinito

Dizionario delle Scienze Fisiche (1996)

semidefinito semidefinito [Comp. di semi- e definito] [ALG] Matrice s. positiva: matrice A dotata di autovalori λi≥0 per ogni i; ha la proprietà che per ogni x∈Rn si ha (x, Ax)≥0; il segno di uguaglianza, [...] però, può essere realizzato anche da vettori x non nulli, e ciò la distingue da una matrice definita positiva. ◆ [ANM] Operatore s. positivo: operatore A su uno spazio di Hilbert H per cui valga (x, Ax)≥0 per ogni elemento x∈H. ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

hilbertiano

Dizionario delle Scienze Fisiche (1996)

hilbertiano hilbertiano [agg. Der. del cognome di D. Hilbert] [ALG] [ANM] Qualifica di enti e nozioni introdotti da D. Hilbert, equivalente a "di Hilbert": spazio h. o spazio di Hilbert, ecc. ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Hilbert, David

Dizionario delle Scienze Fisiche (1996)

Hilbert, David Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆  Azione di H.-Einstein: v. gravità [...] H.: data una base B di uno spazio di H., è lo spazio vettoriale generato da un sottoinsieme B'ÌB di elementi della base. ◆ Spazio di H.: estensione dello spazio euclideo, e precis. uno spazio di Banach nel quale la norma di un elemento è indotta dal ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONE DI BOLTZMANN – MECCANICA DEI FLUIDI – GEOMETRIA EUCLIDEA – SPAZIO VETTORIALE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su Hilbert, David (6)
Mostra Tutti

trasformazione

Enciclopedia on line

trasformazione Mutamento di forma, di aspetto, di struttura. Biologia Trasformazione batterica Fenomeno che si verifica spontaneamente in natura quando le cellule si trovano in uno stadio, detto competente, [...] delle operazioni (➔ DFT). T. di Hilbert T. integrali definite da: e inversamente: T. integrale T. lineare tra spazi di funzioni definita mediante un integrale. Esempi importanti sono le t. di Fourier, di Laplace, di Mellin ecc. T. integrali si ... Leggi Tutto
CATEGORIA: GENETICA – ALGEBRA – DIRITTO PRIVATO – METODI TEORIE E PROVVEDIMENTI
TAGS: EQUAZIONE DIFFERENZIALE LINEARE – RESISTENZA AGLI ANTIBIOTICI – FUNZIONE DI TRASFERIMENTO – GRUPPO UNITARIO SPECIALE – GRUPPO LINEARE SPECIALE

proiettore

Enciclopedia on line

Matematica In algebra, particolare tipo di endomorfismo di un insieme A dotato di una qualsiasi struttura algebrica. Si tratta precisamente di un endomorfismo π (diverso dall’endomorfismo identico) idempotente [...] però interesse soprattutto in relazione agli spazi, per es., di Banach, di Hilbert, di Kantorovič; in tali spazi, infatti, i p. permettono di formulare notevoli teoremi di rappresentazione per diverse classi di operatori lineari. Tecnica P. luminoso ... Leggi Tutto
CATEGORIA: APPARECCHIATURE MATERIALI E TECNICHE – PRODUZIONE INDUSTRIA E MERCATO – ALGEBRA – INDUSTRIA AUTOMOBILISTICA FERROVIARIA E NAVALE – STRUMENTI E TECNOLOGIA APPLICATA
TAGS: STRUTTURA ALGEBRICA – SPAZIO VETTORIALE – CRISTALLO LIQUIDO – CENTIMETRO QUADRO – ENERGIA ELETTRICA

algebra

Enciclopedia on line

Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. [...] in un insieme, si hanno diversi tipi di strutture algebriche: struttura di gruppo, di anello, di corpo, di campo, di modulo, di semigruppo, di quasicorpo, di spazio vettoriale, di a. di Lie, di a. di Boole, di a. in senso proprio ecc. In alcuni ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – PROPRIETÀ COMMUTATIVA – GEOMETRIA ALGEBRICA – LEONARDO FIBONACCI – SPAZIO VETTORIALE
Mostra altri risultati Nascondi altri risultati su algebra (9)
Mostra Tutti

NUMERI, Teoria dei

Enciclopedia Italiana - IV Appendice (1979)

NUMERI, Teoria dei Enrico Bombieri Gli sviluppi recenti della t. dei n. (v. aritmetica: Aritmetica inferiore o teoria dei numeri, IV, p. 370) hanno condotto alla soluzione di problemi fondamentali e [...] amp;out;An è lo spazio affine n-dimensionale sul corpo ???&out;Fp, determinare i punti di ???&out;An che q). Un'altra linea di ricerca è stata aperta dalla soluzione, di A. O. Gelfond e T. Schneider, del problema di Hilbert di provare che 2√2 ... Leggi Tutto
TAGS: ULTIMO TEOREMA DI FERMAT – NUMERO TRASCENDENTE – GEOMETRIA ALGEBRICA – POLINOMIO OMOGENEO – LOGICA MATEMATICA
Mostra altri risultati Nascondi altri risultati su NUMERI, Teoria dei (4)
Mostra Tutti

SISTEMI DINAMICI

Enciclopedia Italiana - VI Appendice (2000)

Sistemi dinamici Franco Magri Dmitrij Anosov Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] polinomialmente da λ e in maniera complicata dalle coordinate sullo spazio delle fasi. Per ipotesi, durante il moto del di chiusura altre asserzioni simili (ugualmente 'evidenti'). Il ventunesimo problema di Hilbert In questo problema si chiede di ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONI DIFFERENZIALI DEL MOTO – EQUAZIONI ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE LINEARE – TEORIA DELLE PERTURBAZIONI
Mostra altri risultati Nascondi altri risultati su SISTEMI DINAMICI (3)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 14
Vocabolario
hilbertiano
hilbertiano 〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali