In matematica, concetto introdotto nel 1935 da H. Whitney in relazione a problemi di topologia e geometria delle varietà. Ha dato luogo a una teoria che ha avuto un enorme sviluppo, specialmente in connessione [...] agli spazi vettoriali (A. Grothendieck, M.F. Atiyah, F. Hirzebruch) e ha condotto alla costruzione di nuovi invarianti topologici. Una funzione continua p: E→B è un f. con spazio totale E, spazio di base B e spazio fibra F se esiste un ricoprimento ...
Leggi Tutto
In matematica, corrispondenza biunivoca e bicontinua tra due spazi topologici S e S′, tale cioè che: a) a ogni punto P di S associ uno e un sol punto P′ di S′ e viceversa (corrispondenza biunivoca); b) [...] fissato a piacere un intorno I′ di un qualunque punto P′ di S′, esista un intorno I del punto P corrispondente a P′ tale che i corrispondenti dei punti di S che fanno parte di I appartengano tutti a I′, ...
Leggi Tutto
Teoria della c. Teoria matematica, nata inizialmente come duale della teoria topologica dell’omologia (➔), con lo scopo di descrivere talune proprietà degli spazi topologici. In seguito ha assunto un assetto [...] indipendente dalle applicazioni topologiche e soprattutto il carattere di una teoria puramente algebrica, divenendo un potente strumento d’indagine anche in altri campi della ricerca matematica. ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] μ alle funzioni di K(E) a supporto in K è una forma lineare continua. Si studiano le misure limitate, la topologia vaga sullo spazio delle misure, il supporto di una misura e le misure a supporto compatto. Queste definizioni sono estese alle funzioni ...
Leggi Tutto
Matematica
Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse.
Proprietà topologiche
La t., che [...] S−T e S, espresse da un’opportuna successione esatta di gruppi e omomorfismi (omologia relativa). Così pure se lo spazio S è il prodotto topologico di due altri spazi S′ e S″, cioè se S=S′×S″, i gruppi di omologia di S si possono calcolare a partire ...
Leggi Tutto
Conformità o equivalenza tra più parti, termini, elementi.
Biologia
Concetto che esprime il rapporto fra organi o strutture morfologiche propri di categorie tassonomiche diverse (fig. 1), ma aventi la [...] di Vn, ciascuno dei quali si riferisce a un valore della dimensione, da zero fino a n. I gruppi di o. sono invarianti topologici, nel senso che se le varietà Vn e V′n sono omeomorfe, i rispettivi gruppi di o. sono isomorfi in ciascuna dimensione.
Ci ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] V; i numeri della successione P1,P2,…,Pm−1 sono i numeri di Betti di V. Nell'annunciare le proprie ricerche di topologia, nel 1892 Poincaré sottolineava che i numeri di Betti non sono sufficienti a distinguere le varietà e dava infatti un esempio di ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] quale una base di aperti è costituita dai prodotti di coppie di aperti A×A′ (con A⊂S e A′⊂S′).
Una funzione continua tra due s. topologici S ed S′ è una funzione f:S→S′ con la proprietà che la controimmagine di ogni aperto di S′ è un aperto di S (la ...
Leggi Tutto
omotopia
Luca Tomassini
Formalizzazione della nozione intuitiva di deformabilità di un’applicazione in un’altra. Più precisamente, due applicazioni f e g dello spazio topologico X nello spazio topologico [...] e g∘f all’identità di X in X. Il tipo d’omotopia di uno spazio è la sua classe rispetto a questa relazione d’equivalenza tra spazi topologici. Se X∼X′ allora esiste una corrispondenza biunivoca tra [Z,X] e [Z,X′] per ogni Z. Il caso Z=Sn (la sfera n ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] e (X) di X. Da notare che una formula classica di Noether dà e (X) = (K.K) - 12 (pa + 1). In definitiva, la struttura topologica di X è determinata da (K.K), da pa e dalla divisibilità della classe di K in H2 (X, ℤ). La classificazione dal punto di ...
Leggi Tutto
topologia
topologìa s. f. [comp. di topo- e -logia]. – 1. In geografia, lo studio del paesaggio e delle sue caratteristiche per individuare e definire i varî tipi di forme del suolo (l’insieme dei segni che si usano per rappresentare tali...
topologico
topològico agg. [der. di topologia] (pl. m. -ci). – Relativo alla topologia, nei suoi varî sign. In partic.: 1. In geografia, codice t., l’insieme dei segni di cui si serve la topologia per rappresentare i varî tipi di forme del...