parabolico
parabòlico [agg. (pl.m. -ci) Der. di parabola] [LSF] (a) Che ha relazione con la parabola oppure con un'equazione algebrica di secondo grado con radici coincidenti. (b) Talora è usato impropr. [...] euclidea, cioè modellata a partire da tutti i postulati enunciati negli Elementi di Euclide, in contrapp. alla geometriaellittica e alla geometria iperbolica, in cui non è supposto valido il 5° postulato (delle parallele) di Euclide. ◆ [MCC] Moto p ...
Leggi Tutto
Numeri, teoria dei
Alf van der Poorten
(App. IV, ii, p. 626; V, iii, p. 698; v. aritmetica, IV, p. 370)
La dimostrazione dell'ultimo teorema di Fermat
Le ricerche relative all'ultimo teorema di Fermat, [...] y(6 - y)=x³ - x. Esaminando il problema geometricamente, di nuovo (−1,0) fornisce una soluzione banale, ma b e c abbiamo una 'curva di Frey' εa,b,c, una curva ellittica con discriminante essenzialmente abc. Nel 1985 G. Frey fece notare che per uvw∙0 ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] che spetta alle equazioni differenziali ordinarie lineari nella teoria delle funzioni ellittiche. Entrambi i successi sono dovuti alla natura essenzialmente geometrica della teoria delle funzioni di una variabile complessa di cui Gauss disponeva ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] e i legami della geometria con la teoria degli invarianti. I risultati ottenuti furono utilizzati all'inizio del XX sec. nell'importante teoria aritmetica delle curve ellittiche (Schappacher 1990).
Lucas si interessò anche al problema di riconoscere ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] z. Usando la formula per la somma dei termini di una progressione geometrica, per ∣t∣⟨1 otteniamo:
Per calcolare R(n) è sufficiente Demjanenko e Gerhard Frey, studiando l'aritmetica delle curve ellittiche, cioè delle curve della forma y2=x3+ax+b ...
Leggi Tutto
Equazioni differenziali: problemi non lineari
Jean Mawhin
La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] nel caso di un'equazione alle derivate parziali di tipo ellittico, per cui viene meno il metodo di shooting, consiste , è unica ed è liscia in Ω.
Diverse questioni di geometria e fisica portano a generalizzare questo problema al caso di funzioni u ...
Leggi Tutto
L'Ottocento: matematica. Calcolo delle variazioni
Craig Fraser
Calcolo delle variazioni
Il problema di Euler
Nel 1744 Leonhard Euler formulò il problema principale del calcolo delle variazioni nei [...] variazionale, è quello che è stato definito 'punto coniugato'. Geometricamente, A′ si trova sull'inviluppo delle curve estremali passanti per un centro di attrazione, la cui traiettoria (ellittica) si deduce dal principio variazionale di minima ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] modulare che non si basasse sulla teoria vasta e difficile delle funzioni ellittiche.
La teoria creata da Dedekind era molto geometrica, e ruotava intorno a una funzione (successivamente chiamata da Felix Christian Klein funzione j) definita ...
Leggi Tutto
Equazioni funzionali
Jacques-Louis Lions
La teoria delle equazioni funzionali si è sviluppata a stretto contatto con i problemi via via sorti nelle varie scienze, a partire dalla meccanica, e dalla [...] ). Un problema interessante, in cui interviene la geometria algebrica, consiste allora nel caratterizzare mediante le proprietà secondo cui, se si utilizzano le autofunzioni della parte ellittica dell'operatore, il problema si riduce a dei sistemi ...
Leggi Tutto
equazione
equazióne [Der. del lat. aequatio -onis "uguaglianza, uguagliamento", da aequare "uguagliare"] [LSF] Uguaglianza tra due espressioni (il primo e il secondo membro dell'e.) contenenti una o [...] derivate parziali: II 442 b, 443 c. ◆ [ANM] E. differenziale ellittica: v. equazioni differenziali alle derivate parziali: II 443 c. ◆ [ANM] ◆ [PRB] E. differenziali stocastiche su varietà: v. geometria differenziale stocastica: III 36 b. ◆ [ANM] E. ...
Leggi Tutto
ellittico1
ellìttico1 agg. [der. di ellisse] (pl. m. -ci). – 1. Relativo all’ellisse, avente forma, andamento, proprietà simili a quelli dell’ellisse: arco e., edificio a pianta ellittica. In botanica si dice ellittico un organo (per es. una...
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...